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Abstract
An algorithm able to deal with any desired fitting model was developed for regression
problems with uncertain and correlated variables.

A typical application concerns the determination of calibration curves, especially (i) in
those cases in which the uncertainties on the independent variables xi cannot be considered
negligible with respect to those associated with the dependent variables yi , and (ii) when
correlations exist among xi and yi . In the metrological field, several types of software have
already been dedicated to the determination of calibration curves, some being focused just on
problem (i) and a few others considering also problem (ii) but only for a straight-line fitting
model. The proposed algorithm is able to deal with problems (i) and (ii) at the same time, for a
generic fitting model. The tool was developed in the MATLAB® environment and validated on
several benchmark data sets, fitted with linear and non-linear regression models.

A review of the most commonly applied approximations to the parameter uncertainty is
also presented, together with a Monte Carlo method proposed for comparison purposes with
the results provided by the formula for the uncertainty evaluation which is implemented in the
software.

1. Introduction

The determination of a curve fitting a set of experimental data
is a frequent problem in metrology, especially in relation to
calibration procedures. The most widely known tools for such
a problem are ordinary (OLS) and weighted (WLS) least-
squares methods. In principle, when uncertainties appear
on both the dependent and the independent variables, it is
necessary to resort to more complex statistical techniques,
such as the weighted total least-squares (WTLS) method [1].
The WTLS formulation addresses the case of heteroscedastic
and/or correlated data. In the particular case of equal
uncertainties and uncorrelated errors in the variables, the
problem reduces to the so-called total least-squares (TLS)
problem [2], also named as orthogonal regression, which
has a unique solution given in terms of the singular value
decomposition of the data matrix. In general, however, the
WTLS problem does not have a closed-form solution and some
iterative optimization algorithm needs to be applied.

Within the metrological area, many books and papers
[3–10], reports [11] and standards [12–14] have been published

on the topic, and several types of relevant software have been
developed [15–18]. Most of the cited works only consider
uncorrelated estimates xi of the stimuli and uncorrelated data
yi . This is a strong assumption which may not apply to
several measurement contexts, for example when the standards
used for the calibration are traceable to a common reference
standard or when the instrument responses need to be corrected
for the estimate of a common quantity. Actually, it is
important to take into account such correlations, both for
estimating the fitting parameters and evaluating the associated
uncertainty.

A general formulation of WTLS, taking into account
the full covariance matrix of the independent variables and
that of the dependent variables, is available in [6, 9] from
NPL. However, the NPL software XLGENLINE [16] can
actually work only with diagonal covariance matrices (see [6],
section 5). A recently published standard [13] and the relevant
software [18] address the case of correlation among xi and
among yi , but considering only a straight-line model. The
B-LEAST software [15] is able to work with different kinds of
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regression models, including power and exponential models,
but it requires diagonal covariance matrices only.

Within this context, we developed a MATLAB®-
based tool for the WTLS method for calibration problems,
able to work without any restriction on the form of the
regression model nor on the structure of the covariance
matrices, which generalizes the area of applicability of the
above-mentioned software. Our algorithm is based on a
MATLAB® minimization routine for non-linear unconstrained
optimization. Notice that a different approach to the problem
could be modelling it by introducing a certain number of
constraints. Such a formulation could involve the use of
Lagrange multipliers, which have been applied so far to several
kinds of metrological problems [19, 20].

In section 2, we establish the minimization problem and
give some details on the implemented software. Section 3
is dedicated to several methods for the evaluation of the
uncertainty associated with the parameter estimates. Section
4 describes the software validation conducted on several
benchmark data sets selected from the literature. In section 5,
the software is applied to an example concerning the calibration
of a gas chromatograph (GC).

2. Regression

2.1. The WTLS model

In order to fit n experimental data pairs (xi, yi), for i =
1, . . . , n, whose components have uncertainties uxi

and uyi
,

respectively, let us consider the following fitting model:

y = f (x, p), (1)

where p = [p1, . . . , pk] is the vector of parameters to be
estimated.

The function to be minimized is

χ2 =
n∑

i=1

[
(xi − Xi)

2

u2
xi

+
(yi − f (Xi, p))2

u2
yi

]
, (2)

where Xi are n parameters to be adjusted jointly with p.
Parameters Xi do not appear in the framework of OLS nor
in that of WLS, since in those models data xi are not affected
by uncertainties. Sum (2) is a function of X = [X1, . . . , Xn]
and p and gets its minimum at the estimates p̂ and X̂.

The above-presented approach does not take into account
any possible covariances cov(xi, xj ) and cov(yi, yj ). A more
general approach, involving also such terms, is expressed in
the following matrix form:

χ2 = dx U−1
x dxT + dyU−1

y dyT, (3)

where dx = [xi − Xi, . . . , xn − Xn] and dy = [yi −
f (Xi, p), . . . , yn −f (Xn, p)] are the residual vectors, and Ux

and Uy are the covariance matrices of the experimental data.
Note that, within expression (3), Ux and Uy can be covariance
matrices of any form, not necessarily diagonal. When Ux and
Uy are diagonal, (3) reduces to (2).

On the other hand, neither expression (2) nor (3) takes
into account possible covariances cov(xi, yj ); within the

metrological literature, there exist some works taking them
into account, but only for diagonal matrices Ux and Uy [5, 6].
We will not consider this case in this paper.

2.2. Minimization

In general, function (3) is non-linear in its parameters X and p

and a numerical solution is necessary for its minimization. We
implemented an algorithm based on the MATLAB® function
fminunc.m (available within the MATLAB® Optimization
Toolbox), which provides minimization for multidimensional
and non-linear functions. This function uses descent direction
methods, which are known as quasi-Newton methods, along
with line-search strategies based on quadratic or cubic
interpolations.

Function (3) is written in an m-file, which is passed
to fminunc.m as an input, together with a starting (vector)
point [X0, p0] for the parameter estimates. Usually, but not
mandatorily, X0i

= xi , for each i, and p0 is the vector of the
OLS estimates of the parameters. See the appendix for details
on how to implement function (3) as an m-file.

Among the outputs provided by fminunc.m, the most
relevant are the estimates vector [X̂, p̂], which is the optimal
solution, and the value of the objective function χ2 at the
solution, that is, χ2

min. Other outputs are available, such as the
gradient vector and the Hessian matrix at the optimal solution,
and the exitflag value, which describes the exit conditions of
the algorithm.

In order to make the algorithm as efficient as possible,
proper settings for the fminunc.m function can be applied
and suitable data transformations implemented. For example,
setting the ‘GradObj’ option of fminunc.m ‘on’ allows the
application of a user-defined gradient of the objective function
instead of letting fminunc.m estimate it by finite differences.
To that aim, the m-file describing function (3) needs to be
completed with the analytical expression for the gradient of
(3) itself (see the appendix).

Moreover, before passing experimental data xi and yi

to fminunc.m, it may be useful to standardize them into
(xi − x̄)/sx and (yi − ȳ)/sy , respectively, where x̄ and ȳ

are the sample means and sx and sy are the sample standard
deviations of the input data sets x and y. The reason for
standardization is that it can avoid round-off errors typically
occurring when inverting ill-conditioned matrices. Of course,
also the covariance matrices of the input variables have to
be scaled accordingly, that is, becoming Ux/s2

x and Uy/s
2
y .

Note that χ2
min is invariant for data standardization. After

minimization, the obtained parameter estimates refer to the
standardized data and need to be transformed back into the
estimates of the original parameters1. In order to do that, the
analytical expression of the original parameters p in terms of
the standardized ps is needed and it can be found from the
equation f (x, p) = f ((x − x̄)/sx, ps)sy + ȳ (obtained from
the standardization of variables in expression (1)), by equating
the coefficients of the corresponding terms in x. For the sake

1 Accordingly, once the covariance matrix of the parameter estimates is
determined (as will be described in section 3), it will also be suitably
transformed.
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of clarity, we describe such an approach for the straight-line
model

y = ax + b. (4)

Standardizing variables x and y, one gets the standardized
model

y − ȳ

sy

= as

x − x̄

sx

+ bs, (5)

whereas andbs are the corresponding standardized parameters.
By rearranging equation (5), the following relation is obtained:

y = (assy/sx)x − assy/sxx̄ + bssy + ȳ. (6)

By equating the coefficients of x in equations (4) and (6), and
the constant terms, one gets the relationships a = assy/sx

and b = −assy/sxx̄ + bssy + ȳ, linking the original and the
standardized parameters.

Analytical relations between original and standardized
parameters are well known for the multiple regression model
(see [21] for an example among many others). However,
finding such a relationship for a general regression function
is a model-dependent problem.

3. Uncertainty of parameter estimates

3.1. Approximating formulae

In general, the evaluation of the uncertainty associated with the
parameter estimates of an implicit model is a difficult issue. In
the considered case, the minimization problem does not have
an analytical solution but needs to be solved iteratively [22].
Within metrological literature, several approximations to the
uncertainty have been proposed:

(i) A first approximation [23] consists in applying to the
fitting model (1) the typical WLS parameter uncertainty
evaluation (see, e.g., [24]), after converting the variance of
the independent variable x into an effective contribution
to the variance of the dependent variable y (the so-called
‘effective variance’ method [25]). Actually, reducing
a WTLS fitting to a WLS problem is a widespread
habit, which may lead to reliable results provided
that the heteroscedasticity of the dependent variable is
negligible [26].

(ii) Another approximation corresponds to identifying the
covariance matrix associated with the parameter estimates
with (JTJ)−1 [6, 13], where J is the Jacobian matrix of
the x and y residuals, weighted by the triangular matrix
of the Cholesky factorization of the covariance matrix
associated with the experimental data.

(iii) A third approximation is given by 2H−1 [4, 5], where H is
the Hessian matrix of the cost function (3), i.e. the matrix
of the second-order derivatives with respect to X and p,
calculated at the solution point [X̂, p̂]. In [22], it has been
shown that such a formula gives an approximation to the
estimate uncertainty better than that described in (ii). The
two approximations coincide whenever the residuals dy

are linear with respect to X and p.

(iv) Some standards [12, 14], a paper [7] and the relevant
software [15] refer to another approximation for the
uncertainty of the parameter estimates, for which an
analytical derivation can be found in [22]. The formula is
given by

Vout = QVinQ
T. (7)

The matrix Vin is the (block-diagonal) covariance matrix
of the input variables xi and yi , that is

Vin =
[
Ux O

O Uy

]
, (8)

where O is the null matrix. The matrix Q in expression
(7) is defined as

Q = H−1Din, (9)

where Din is the matrix of the mixed second-order
derivatives of function (3) with respect to parameters
[X, p] and input variables [x, y].
Matrix Vout, given by (7), encloses the variances and the
covariances of the whole set of the (output) parameter
estimates [X̂, p̂], from which it is easy to extract the
submatrix relevant to the parameter estimates p̂ of the
fitting model (1).

Expression (7) can be derived by applying the usual
propagation of uncertainty to a first-order Taylor expansion
of the cost function (3) [22] and considering that equation
(3) implicitly defines parameters [X, p] as a function of
observations [x, y]. Hence, (7) is valid only when the
non-linearity of the above-mentioned implicit function can be
neglected.

For homoscedastic observations and for a straight-line
fitting model, the problem reduces to a TLS problem, which
has a solution in terms of the singular value decomposition
of the data matrix [2]. In this case, since the parameter
estimates result in a linear transformation of the data, formula
(7) provides an exact expression for their uncertainty. For
such a model, it was analytically demonstrated that both
approximations (ii) and (iii) provide uncertainty values (in the
sense of the norm of relevant covariance matrices) smaller than
those provided by (7) [22]. Hence, at least for the considered
TLS problem, it can be derived that approximations (ii) and (iii)
underestimate the uncertainty. Therefore, within our software,
we implemented formula (7) in order to calculate the parameter
estimates’ uncertainty (see the appendix).

3.2. Monte Carlo method for uncertainty evaluation

We describe here an implementation of MC simulations to
evaluate the uncertainty associated with the WTLS parameter
estimates. Once estimates [X̂, p̂] of parameters [X, p] are
found, the corresponding adjusted points (X̂i, Ŷi = f (X̂i, p̂))

can be obtained, for i = 1, . . . , n. Hence, M couples (xij , yij ),
for j = 1, . . . , M , can be generated by means of a MC
simulation. At each j th step of the simulation, n abscissae
xij (for i = 1, . . . , n) are drawn from a multivariate normal

distribution centred in X̂ and having covariance matrix equal to
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Ux, and n ordinates yij are drawn from a multivariate normal

distribution centred in Ŷ and having covariance matrix Uy .
Hence, the WTLS method is applied to each generated data
set, producing a vector estimate p̂j

2. Therefore, one can take
the sample covariance matrix of the MC distribution of the p̂j

values as the covariance matrix associated with p̂.
A similar MC approach was described and implemented

also in [27]. It is to be noted that such a simulation consists
of a method for repeatedly simulating potential data in an
experiment where the fitted curve happens to be close to
f (X̂i, p̂), which is a different concept from that of propagating
the probability distributions of the model input quantities, an
idea which underlies Supplements 1 and 2 to the GUM [28, 29].
However, considering the estimation of the parameter vector p
as an implicit multivariate measurement problem, it would be
interesting to apply the propagation of probability distributions
as addressed in Supplement 2, but such an investigation is
beyond the scope of this paper.

We tested the reliability of the used MC simulation in the
case of the WLS method applied to a straight-line model: we
obtained practically the same uncertainties as those provided
by the well-known analytical expressions for the uncertainty
of WLS parameter estimates. Such a result is expected for
models which are linear in the parameters [30]. However,
in the case of a general WTLS problem, which is non-linear
in the parameters, MC simulations may perform worse than
closed formulae for the uncertainty, such as (7), although they
are based on linear approximations of the model [30]. One
should be aware of such a possibility when comparing the
uncertainties evaluated in the two ways.

4. Validation of regression results and associated
uncertainty

4.1. Data and methods for validation

For most of the following validations, Pearson’s data [31] with
York’s weights [32], reported in table 1, and unit weights have
been used. These data are extensively used within the literature
[4, 6, 7, 25, 32, 33] for validation of software implementing
WTLS, because, for such data, exact solutions for some
polynomial fitting models are available [34–36]. This data set
shows a case of a non-negligible variability on x with respect
to y and, when considering York’s weights, it represents a case
of a highly varying uncertainty (strong heteroscedasticity) in
both variables.

It is to be noted that these data show an essentially linear
trend, hence the fact that we will also address other models
(such as the cubic and the exponential) may seem not very
meaningful from a statistical point of view, but it is for purposes
of comparison with the few other results we could find in the
literature dedicated to WTLS regression models other than the
straight line.

For validating our algorithm in those cases in which
general covariance matrices Ux and Uy , not necessarily
diagonal, need to be considered, we used data from the ISO/TS

2 Because of the non-linearity of the regression model, it usually happens that
the mean of values p̂j differs from p̂.

Table 1. Pearson’s data with York’s weights. Corresponding
uncertainties are given by w−1/2

xi
and w−1/2

yi
, respectively.

xi wxi
yi wyi

0.0 1000.0 5.9 1.0
0.9 1000.0 5.4 1.8
1.8 500.0 4.4 4.0
2.6 800.0 4.6 8.0
3.3 200.0 3.5 20.0
4.4 80.0 3.7 20.0
5.2 60.0 2.8 70.0
6.1 20.0 2.8 70.0
6.5 1.8 2.4 100.0
7.4 1.0 1.5 500.0

Table 2. Data from example in [13, section 10].

xi yi

50.4 52.3
99.0 97.8

149.9 149.7
200.4 200.1
248.5 250.4
299.7 300.9
349.1 349.2

28037 ([13], example in section 10). Relevant data and
corresponding covariance matrices are reported in tables 2
and 3.

Note that function (3) is symmetric with respect to x and
y, hence a validation procedure for the algorithm could consist
in the comparison between the parameter estimates obtained
when fitting y on x and those obtained when fitting x on y

(the latter estimates being made comparable to the former
accordingly to the inverse model). This was verified for the
straight-line model (see table 4).

4.2. Uncorrelated input variables

In this subsection, we consider diagonal matrices Ux and Uy

only.

4.2.1. The straight-line model. The validation was
performed on the fitting model y = ax+b, applied on Pearson’s
data with York’s and unit weights.

• Pearson’s data with York’s weights. The second column
of table 4 shows the fitting parameter estimates and the
corresponding uncertainties relevant to the fitting of y

on x. The uncertainties were calculated by applying
formula (7). In the third column, the relative differences
between the parameter estimates and the true values
provided by [34] are shown, as well as the relative
differences between the calculated uncertainties and those
obtained by means of MC simulations (M = 5 × 105),
performed as described in section 3.2. Concerning the
parameter estimates, the proposed algorithm provided the
best approximation to the problem solution among several
fitting procedures approximating the exact result (see
table 2 in [34]). Concerning the uncertainty evaluation,
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Table 3. Covariance matrices associated with data from example in [13, section 10].

Ux Uy


0.50 0.00 0.25 0.00 0.25 0.00 0.25
0.00 1.25 1.00 0.00 0.00 1.00 1.00
0.25 1.00 1.50 0.00 0.25 1.00 1.25
0.00 0.00 0.00 1.25 1.00 1.00 1.00
0.25 0.00 0.25 1.00 1.50 1.00 1.25
0.00 1.00 1.00 1.00 1.00 2.25 2.00
0.25 1.00 1.25 1.00 1.25 2.00 2.50







5 1 1 1 1 1 1
1 5 1 1 1 1 1
1 1 5 1 1 1 1
1 1 1 5 1 1 1
1 1 1 1 5 1 1
1 1 1 1 1 5 1
1 1 1 1 1 1 5




Table 4. Straight-line model for Pearson’s data with York’s weights: validation of the fitting parameters and associated uncertainties.

y − x x − y

Value % diff Value % diff

χ 2
min 11.866 353 194 1 0 11.866 353 194 1 0

a −0.480 533 407 44 2.8 × 10−9 −0.480 533 407 43 4.0 × 109

b 5.479 910 223 95 −1.4 × 10−9 5.479 910 223 92 2.0 × 10−9

ua 5.76 × 10−2 −1.3 — —
ub 2.92 × 10−1 −1.5 — —
ua, b −1.62 × 10−2 2.9 — —

the approximations provided by formula (7) were equal to
those given in table 3 of [7]. The uncertainties obtained
via MC simulations tend to be slightly larger than them.
The fourth column of table 4 reports the corresponding
results for the fitting of x on y, where a and b were made
comparable to those in the second column by appropriate
transformation. Results in the two columns are equal up
to the tenth decimal digit (the uncertainty values in the
case of the fitting of x on y are not relevant to such a
comparison).

• Pearson’s data with unit weights. When considering unit
weights, we obtained χ2 = 0.618 572 759 437 045, which
is equal to the exact solution reported in [35, table III]
up to the twelfth decimal digit (the exact values of the
parameters to compare our estimates are not available in
the literature).

4.2.2. The cubic model. The validation was performed on
the fitting model y = ax3 + bx2 + cx + d , applied on Pearson’s
data with York’s and unit weights.

• Pearson’s data with York’s weights. We obtained χ2 =
10.486 904 057 7079, equal to the exact solution up to the
tenth decimal digit, to which the exact solution is reported
in [35, table III].
The parameter estimates were compared with those
provided in [7], which were obtained by means of
the B LEAST software [15], recommended by [12].
The relevant differences were calculated at the sixth
decimal digit, since the results in [7] are reported
with that numerical accuracy. The corresponding
relative differences are shown in the third column of
table 5. Actually, we saw that relative differences smaller
than 3 × 10−6 could be obtained when running the
B LEAST software with different settings of the algorithm
convergence. Concerning the uncertainty evaluation, the
approximations provided by our software were equal to
those provided by the B LEAST software.

Table 5. Cubic model for Pearson’s data with York’s and unit
weights: validation of the fitting parameters and associated
uncertainties.

York’s weights Unit weights

Value % diff Value % diff

a −0.011 556 565 379 0.03 −0.013 240 528 570 0.00
b 0.157 154 323 493 −0.02 0.152 471 601 429 0.00
c −1.108 353 203 572 0.01 −0.999 835 346 653 0.00
d 6.142 329 401 915 0.00 6.015 263 733 009 0.00
ua 1.00 × 10−2 −44 4.05 × 10−2 −81
ub 1.36 × 10−1 −33 4.72 × 10−1 −80
uc 5.83 × 10−1 −20 1.55 −81
ud 7.79 × 10−1 −8 1.36 −83
ua, b −1.32 × 10−3 63 −1.88 × 10−2 96
ua, c 5.15 × 10−3 −55 5.67 × 10−2 −96
ua, d −5.35 × 10−3 43 −3.26 × 10−2 97
ub, c −7.65 × 10−2 46 −7.03 × 10−1 96
ub, d 8.58 × 10−2 −34 4.40 × 10−1 −97
uc, d −4.19 × 10−1 24 −1.74 97

The third column of table 5 also reports the relative
differences between the calculated uncertainties and those
obtained by means of MC simulations (M = 5 ×
105). Here, the differences between the uncertainties
obtained using equation (7) and those obtained via
MC simulations are even more conspicuous than those
reported in table 4 for the straight-line model, which
may be due to the increased non-linearity of the
model.

• Pearson’s data with unit weights. We obtained χ2 =
0.485 152 486 927 038, equal to the exact solution up to
the twelfth decimal digit, to which the exact solution is
reported in [35, table 3].
The parameter estimates were compared with those
provided in [36]. The relevant differences were calculated
at the eighth significant digit, since the results in [36] are
reported with that numerical accuracy, and result in being
all equal to zero.
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Table 6. Exponential model for Pearson’s data with York’s weights:
validation of the fitting parameters and associated uncertainties.

York’s weights

Value % diff

a 95.690 719 390 590 −0.38
b −90.234 033 497 515 0.41
c 0.005 200 660 678 0.40
ua 1.27 × 101 —
ub 1.26 × 101 —
uc 7.12 × 10−4 —
ua, b −1.60 × 102 —
ua, c −5.47 × 10−3 —
ub, c 5.53 × 10−3 —

The fifth column of table 5 also reports the relative
differences between the calculated uncertainties and those
obtained by means of MC simulations (M = 5 × 105).
Here, such differences are even larger than those in
the third column, because the unit weights used in the
regression lead to higher uncertainties, which emphasize
the non-linearity effects.

4.2.3. The exponential model. The validation was performed
on the fitting model y = a + becx, applied on Pearson’s data
with York’s weights. We obtained χ2 = 11.863 655 879 364,
equal to the solution reported in [7, table 2] up to the fourth
decimal digit.

The parameter estimates were compared with those
provided in [7] as well: the relevant differences were calculated
at the fifth decimal digit, since the results in [7] are reported
at that precision, and the corresponding relative differences
are shown in the third column of table 6. Such values show
a certain gap between the two fitting methods, still lying,
however, within the associated uncertainties (reported in the
same table). Within this validation example, unfortunately,
we encountered serious numerical problems in applying the
matrix inversions involved in equation (9). Note, in fact,
that the exponential model can be approximated by the linear
model when cx � 1; as a result, the least-squares algorithm
will essentially try to fit three parameters to a straight-line
model, and the associated covariance matrix will be essentially
singular. Hence, the above-mentioned uncertainties could be
obtained only by means of MC simulations (M = 5 × 105).
No uncertainty was provided by [7] for this model, hence a
comparison is not possible.

4.3. Correlated input variables

In this subsection, we consider general matrices Ux and Uy .

4.3.1. The straight-line model. The validation was
performed to the fitting model y = ax + b, applied on data
reported in table 2 with associated covariance matrices reported
in table 3. We compared the results obtained with our algorithm
with those produced by software [18] and reported in [13].
The second column of table 7 reports the χ2

min value of the
fit and the parameter estimates together with the associated

Table 7. Straight-line model for data from the example
in [13, section 10]: validation of fitting parameters and associated
uncertainties.

Value % diff

χ 2
min 1.771 847 450 960 2.81 × 10−9

a 1.001 230 760 542 −2.28 × 10−7

b 0.342 395 888 828 −1.44 × 10−3

ua 9.01 × 10−3 3.24 × 10−2

ub 2.06 −2.18 × 10−2

ua, b −1.29 × 10−2 1.27 × 10−2

Table 8. Calibration data set: amount fractions and GC peak areas
from [12, B.2.2 example 2, table B.7.]

Amount fraction GC peak area

y/mmol mol−1 u(y)/mmol mol−1 x/counts u(x)/counts

1.5 × 10−3 9.000 × 10−4 6.000 × 101 3.500 × 101

1.888 × 10−1 4.500 × 10−4 7.786 × 103 1.357 × 102

1.990 4.000 × 10−3 8.170 × 104 3.670 × 101

3.796 3.900 × 10−2 1.562 × 105 2.232 × 102

5.677 1.250 × 10−2 2.333 × 105 1.372 × 102

7.118 1.250 × 10−2 2.930 × 105 2.455 × 102

9.210 2.000 × 10−2 3.806 × 105 1.251 × 102

1.090 × 101 2.500 × 10−2 4.497 × 105 3.218 × 102

uncertainties and the covariance term. The third column shows
the corresponding relative differences between such values and
those given in [13].

Concerning the uncertainty and the covariance terms, we
obtained relative differences of about 3 × 10−2 between our
values and those obtained with a MC simulation (M = 106).

Neglecting correlation among xi and yi , i.e. taking the
covariance matrices in table 3 as diagonal, we noted a relative
variation of up to 10% in the parameter estimates and up to
38% in the uncertainty and covariance terms, which show the
importance of properly taking correlations into account.

5. Example: application to calibration of GCs

We consider here an example about the calibration gas of
a chromatograph (GC) reported in ISO 6143 [12, B.2.2
example 2]. In general, a GC is calibrated with respect to a set
of gaseous certified reference materials (CRM), i.e. standard
gas mixtures [6, 12]. The instrument responses are the peak
areas of the chromatogram corresponding to each analysed gas
component for each CRM.

In the present example, nitrogen (N2) in a synthetic natural
gas is analysed. The calibration data set consists of eight
data points, reported in table 8 together with the associated
uncertainties: y are the amount fractions of N2 within the
CRMs and x are the GC relevant peak areas.

We fitted the data with a second-order polynomial function
y = ax2 + bx + c by means of our algorithm, in order to
determine the GC analysis function for N2.

The fitting results obtained when considering y and x

values uncorrelated are reported in the second column of table 9
and can be compared with the results in [12], here reported in
the third column.
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Table 9. Results of WTLS fitting on data reported in table 8.

Uncorrelated CRMs ISO 6143 Correlated CRMs % diff

χ 2
min 1.40 1.47 1.28 −8.24

a −4.0373 × 10−13 −4.1096 × 10−13 −4.2247 × 10−13 −4.64
b 2.4400 × 10−5 2.4403 × 10−5 2.4403 × 10−5 0.01
c −1.2895 × 10−4 −1.4037 × 10−4 −1.3538 × 10−4 −4.99
ua 1.895 × 10−13 1.895 × 10−13 1.804 × 10−13 −4.81
ub 5.901 × 10−8 5.901 × 10−8 5.644 × 10−8 −4.35
uc 1.175 × 10−3 1.175 × 10−3 1.174 × 10−3 −0.13
ua, b −1.020 × 10−20 −1.020 × 10−20 −9.106 × 10−21 10.72
ua, c 4.667 × 10−17 4.667 × 10−17 4.304 × 10−17 −7.79
ub, c −2.057 × 10−11 −2.057 × 10−11 −1.9609 × 10−11 4.67

We also considered the case of correlated CRMs as
described in [12], introducing a covariance term equal to
0.000 16 (in mmol mol−1 counts) between the fourth and the
seventh CRMs (because the former is obtained by dilution from
the latter) and another covariance term equal to 0.0001 (in
mmol mol−1 counts) between the fifth and the eighth CRMs
(because both are traceable back to a common set of primary
standards). The corresponding fitting parameters are reported
in the fourth column of table 9. Note that in [12], such a
case was treated only for the straight-line model, hence a
direct comparison between the method applied in the reference
and the WTLS method is not possible. The fifth column of
table 9 reports the relative differences between fitting results
in the fourth and second columns, showing the error that one
would make when neglecting the covariance terms between
the CRMs.

6. Conclusions

Compared with the software available within the metrological
area addressing the WTLS method for calibration curves, the
presented algorithm has the advantage of dealing with both
uncertain and correlated variables for any desired fitting model,
even when this is strongly non-linear in the parameters. It is
a very powerful and versatile tool for WTLS implementation,
especially for calibration purposes, its main advantages being
the following:

– no restriction on the choice of the fitting model;
– no restriction on the form of the covariance matrices

associated with the dependent and independent variables;
– easy implementation;
– very good accuracy in the parameter estimation (verified

by validation);
– implementation of an approximated formula for the uncer-

tainty evaluation, appropriately derived for minimization
problems.

A Monte Carlo method was also developed both
for purposes of comparison with the formula for the
uncertainty evaluation implemented within the software, and
as an independent method for uncertainty evaluation. The
comparison results showed that, for increasing non-linearity of
the models, the uncertainties provided by the two methods can
substantially depart one from the other, the MC uncertainties
being larger than those provided by formula (7). Such a result

deserves a more careful investigation; a proper implementation
of Supplements 1 and 2 to the GUM could also be considered
in order to evaluate the uncertainties associated with the WTLS
parameter estimates.

It is planned to make the algorithm freely available at the
File Exchange of the MATLAB® Central.
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Appendix. The WTLS algorithm

In the following, we give a short description of the algorithm:

(i) Input of data x, y, Ux and Uy .
(ii) Standardization of the data.

(iii) Definition of the cost function χ2 within a MATLAB® file
myfun.m. As an example, in the following, we show the
MATLAB® code relevant to a straight-line model fitting
ten experimental points:

function [chi2, g] = myfun(p)
global x y Vxinv Vyinv dx dy;
dx = x - p(1:end-2);
dy = y - p(end-1)*p(1:end-2) - p(end);
chi2 = dx*Vxinv*dx’ + dy*Vyinv*dy’;

if nargout > 1
g(1) = -2*dx(1)*Vxinv(1,1)

- 2*p(11)*dy(1)*Vyinv(1,1);
g(2) = -2*dx(2)*Vxinv(2,2)

- 2*p(11)*dy(2)*Vyinv(2,2);
...

g(10) = -2*dx(10)*Vxinv(10,10)
- 2*p(11)*dy(10)*Vyinv(10,10);

g(11) = -2*(p(1)*dy(1)*Vyinv(1,1)
+ ... + p(10)*dy(10)*Vyinv(10,10));

g(12) = -2*(dy(1)*Vyinv(1,1)
+ ... + dy(10)*Vyinv(10,10));

end
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In the above command lines, input global variables x, y,
Vxinv and Vyinv are the standardized input data and
relevant inverse covariance matrices; p is the parameter
vector [X, p], made of ten abscissae to be adjusted, i.e.
p(1:end-2), and two fitting parameters pertaining to the
straight-line model, i.e. p(end-1) and p(end) (end is
equal to twelve, in this case); dx, dy and chi2 implement
expression (3). Functions g(i) describe the analytical
expression for the first derivative of χ2 with respect to the
ith parameter. Defining the gradient g in this way, it is
possible to apply the GradObj option.

(iv) Calculation of the starting point [X0, p0] for the parameter
estimates, by means of the OLS method applied to the
considered fitting model.

(v) WTLS estimation of the model parameters by means of
the MATLAB® function fminunc:

[par opt, fval, exitflag] = fminunc(@myfun,
x0,... ...optimset(’GradObj’,’on’,’TolX’,
1e-9,’TolFun’,1e-10,... ...’MaxFunEvals’,
3000, ’LargeScale’,’off’));

where

– par opt is the solution [X̂, p̂] of the minimization of
the object function myfun,

– fval is the minimum value (χ2
min) of myfun at the

solution par opt,
– exitflag is the value identifying the reason for the

termination of the algorithm,
– myfun is the object function (3) to be minimized,
– x0 is the starting point [X0, p0] of the iteration process,
– optimset creates optimization option structures.

When a user-defined gradient of the objective
function is provided, option GradObj is set to “on”.
The default “off” setting causes fminunc to estimate
gradients using finite differences. TolX and TolFun
are the termination tolerances on the function value
and on the solution, respectively. MaxFunEvals is the
maximum number of function evaluations allowed.
When LargeScale is set “on”, fminunc uses a
minimization large-scale algorithm, when it is set
“off”, a medium-scale algorithm is implemented. For
more details on fminunc, refer to the Help of the
Optimization Toolbox.

(vi) Transformation of the obtained estimates (relevant to the
standardized data) back into the estimates of the original
parameter.

(vii) Evaluation of the covariance matrix, associated with the
parameter estimates, by implementation of formula (7):

q0 = [par opt, x, y];
H’ = hessian(@chisquare hessian, q0);
H = H’(1:npar, 1:npar);
Din = H’(1:npar, npar+1:npar+(2*N));
O = zeros(N);
Vin = [Vx, O; O, Vy];
Vout = inv(H)*Din*Vin*Din’*inv(H);

where x and y are the standardized input data, again,
and par opt is the solution of the minimization

algorithm; q0 is the point at which the hessian H’ of func-
tion chisquare hessian is calculated by means of func-
tion hessian. The latter can be any MATLAB® function
able to calculate the Hessian matrix of a scalar function
(we used a function available within the File Exchange of
the MATLAB® Central). Function chisquare hessian
is again an implementation of the cost function χ2, which
is now seen as a function not only of parameters [X, p]
but also of the input data x and y, treated as variables.
The chisquare hessian.m function of the considered
example, relevant to a straight-line model fitting ten ex-
perimental points, is shown in the following:

function chi2 hes = chisquare hessian(q)
global npar Vxinv Vyinv dx dy;
dx = q(npar+1:2*npar-2) - q(1:npar-2);
dy = q(2*npar-1:end) - q(npar-1)*q(1:npar-2)
- q(npar);
chi2 hes = dx*Vxinv*dx’ + dy*Vyinv*dy’;

where npar, in the considered case, is equal to twelve and
end is equal to thirty-two (ten abscissae and ten ordinates
are added as parameters). Therefore, matrix H’ contains
all the second-order derivatives of the cost function. The
relevant submatrices are H and Din, which are needed for
calculating expression (9). Matrix Vin is constructed ac-
cording to (8) and, finally, the covariance matrix Vout is
obtained according to (7).

(viii) Extraction, from matrix Vout, of the submatrix relevant
to the uncertainties and the covariances associated with
estimates p̂.

(ix) Transformation of the obtained covariance matrix
(relevant to the standardized data) back into the covariance
matrix of the original parameter.
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