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1 Introduction

When dealing with a computational code, one may be interested in propagating the uncertainties related to the
input variables to estimate the uncertainty associated with the output variable.

In the decision theoretical framework pertaining to conformity assessment, one is interested also in the
position of the output variable with respect to a given threshold (regulatory threshold,...). The problem of
knowing whether a computationally expensive model exceeds a given threshold is very common for reliability
analysis and safety-critical applications such as aerospace, nuclear power stations and civil engineering (models
of bridges and buildings etc). The threshold can be interpreted as a lower specification limit defining a one-sided
tolerance interval.

In this guide, the decision is based on the probability that the output exceeds the threshold. Accordingly,
the decision of conformity is based on the probability of conformity.

An alternative approach could be to estimate the 5% quantile of the output distribution and compare it to
the lower specification limit as proposed in [1].

The statistical methods that are usually used to deal with the propagation of uncertainties may need to be
adapted to compute the probability of exceeding a threshold. This is particularly the case when the probability
is small or when the code is computationally expensive.

This document reports a guide for conformity assessment of computationally expensive systems using
cheaper approximations based on odelling the relationship between the two codes and the behaviour of the
codes viewed as black boxes evaluated at input points using co-kriging.

Section 2 reports conformity assessment in fire safety engineering and describes the fire engineering case
study. Section 3 describes the statistical methodology to take advantage of cheaper approximations when
assessing the conformity of an expensive system. Section 4 applies the methodology to the fire engineering
case study and compares results obtained with various kriging methods.

2 Assessing conformity in fire safety engineering

2.1 Fire engineering case study : context and tenability criteria

For fire safety engineer, one of the major problem consists to limit the fire risk in a large spaces such as
buildings, shopping malls, car park, theaters, etc. The strategy adopted consists to reduce its occurrence and
the design fire load or to limit its extent through the use of fire suppression systems such as sprinklers [2]. This
approach is currently achieved by a second line of defense which consist to ensure that the thermal stratification
is high enough so that occupant are not trapped in the smoke and may escape easily to a place of refuge. In
other words, the objective is therefore to guarantee that the environment at heights useful for evacuation is clear
enough to allow occupant to evacuate before reaching compromised tenability conditions in term of heat and
toxicity of smoke. In order to achieve this objective, adapted smoke removal systems are used in order to keep
the thermal stratification at a sufficient height for a time long enough.

The prediction of the evolution of tenability condition in an environment in fire can be estimated using
complex fire model like zone model or computational fluid dynamics tool. It require also to set appropriate
tenability criteria which ensure that the occupants will not be exposed to untenable conditions. Nowadays,
there is no single set that is universally accepted and various tenability criteria are proposed [3]. The tenability
criteria used in the present study come from the international standard ISO 13571 [4]. They are based on the
best available scientific judgement of the consequences of human exposure to fire effluents. According to this
standard, during the people evacuation, the risks related to fire mainly of three types:

• The loss of visibility can cause delay in escape, disorientate the crowds and can expose them for longer
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periods of time or induce significant exposure to the other effects of fire;

• The thermal risks generated by fire and smoke can lead to incapacitation or lethality among populations.
They are linked to the heat flux associated to the radiation of the smoke and the temperature of the
atmosphere;

• The toxic risks related to the chemical species present in smoke. These are incapacitating or can be lethal,
sometimes at considerable distances from the fire.

Given the numerical tool used, and in order to simplify the problem, one decided that the modelling focuses
only on the life threat due to heat exposure. In this case, only two criteria are considered :

• the threshold of second degree burning of the skin. The tenability limit for exposure of skin to radiant
heat is approximately 2.5 kWm−2. Below this incident heat flux level, exposure can be tolerated for
30 min or longer without significantly affecting tenability. It can be noted that the radiant heat limit of
2.5 kWm−2 may be reached when the hot layer temperature rises above 200◦C. Furthermore, thermal
burns to the respiratory tract can occur upon inhalation of air above 60 ◦C when saturated with water
vapour.

• the exposure where hyperthermia is sufficient to cause mental deterioration and, therefore, threaten sur-
vival. Thermal tolerance data for unprotected skin of humans suggest a limit of about 120 ◦C for con-
vected heat, above which there is, within minutes, the onset of considerable pain along with the produc-
tion of burns [[4]].

From the above description, in fire safety studies, the typical methods for ensuring whether the environment
on the evacuation path is practicable enough to allow occupant to locate emergency exit, consist to check that
the fields are roughly uniform at height 2m (except obviously in the fire plume) [2]. Then it must be ensured that
the radiant heat from the fire and the hot smoke layer does not exceed the skin pain threshold of 2.5 kWm−2

(and therefore T < 200◦C ). Finally the last criterion lead to ensure that the temperature at nose height (1.5m)
do not exceed 60 ◦C.

2.2 Fire model

2.2.1 Zone model - CFAST

The Consolidated Model of Fire and Smoke Transport, CFAST, is a numerical tool use to simulate the impact
of past or potential fires and smoke in a specific building environment. CFAST is a fire model which relies
on the assumption that a volume is subdivided in a two-zone zones, perfectly mixed and with homogeneous
properties in terms of temperature and composition: a hot layer with combustion products, located near the
ceiling, and a cold layer with fresh clean air at the bottom, separated by a moving interface. The fundamental
equations (conservation of mass and energy, ideal gas law and internal energy) are implemented as a system
of ordinary differential equations (ODE). These ODE are solved to give the evolving distribution of pressure,
layer heights and temperatures. Zone models rely on very strong simplifications and their application is limited
to the geometry characteristics over which the model was tested and validated. For further details on CFAST,
the reader is referred to the ref. [5] .

2.2.2 Computational fluid dynamics model - FDS

CFD simulations were performed with the version 6.1.2 of the Fire Dynamics Simulator (FDS) code developed
by the NIST Building and Fire Research Laboratory (USA) and the VTT technical research centre of Finland.
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Figure 1: Simulation of fire plume in a building. Numerical room with the CFD code Fire Dynamics Simulator.
Smoke plume obtained from a fire area of 13.75m2 and a heat release rate of 487kW.m−2. Dummy regions
and layer height are represented.

FDS solves an approximation of the Navier-Stokes equations appropriate for low-mach number, thermally-
driven flows. The numerical algorithm employed is an explicit predictor/corrector scheme, second order accu-
rate both in space and time, using a direct Poisson solver. Turbulence is treated using Large Eddy Simulation
(LES), via the classical Smagorinsky subgrid scale model. A mixture fraction combustion model assuming an
infinitely fast global chemical reaction is used to estimate the heat release and smoke distributions in the com-
putational domain. The radiation transport is treated using a finite volume solver in which grey gas absorption
coefficient for soot and gas species is linked to the mixture fraction. FDS relies on strong assumptions which
limit the application to well-ventilated fire. For further details on FDS, the reader is referred to the ref. [6].

2.3 Input data

For the purpose of the study, a known building is considered. As a consequence, its dimensions are known (di-
mensions: 19.75m(length)× 12m (width)× 16.50m(height)) along with those of the openings with negligible
uncertainty. These quantities are then assigned a fixed value. The thickness and the thermal properties of the
walls are defined in accordance with the present structures. The test hall is equipped with two doors assumed
as open (dimensions: m (length) × m(width)) and two natural smoke removal system (dimensions : m (length)
× m(width)). The room mesh is defined from the actual dimensions of the test hall, as shown in Fig. 1. In the
case of FDS, the grid is uniform, and the cell dimensions are 25 cm on each side. This cell size is a compromise
between flow resolution and computational time.

As the boundary condition, the gas in the computation domain was set still with ambient temperature. At
the free side, static pressure boundary condition was employed. The fire source is placed in the centre of the
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Figure 2: Sample design fire curve.

test hall.

Apart from changes in environmental conditions (such as outside and inside temperatures, ambient pressure
and relative humidity, wind velocity and direction), the properties of the fire (fire source area, fire growth rate
and heat release rate per unit area) in the hall test is governed by the physical and chemical process evolved.
Multiple interactions between these input variables at different time during the fire may affect the pattern
of the fire growth and lead to uncertainties. For this reason, there is a need to determine the uncertainty
(probability) with which input variables may affect a real fire in a known building. In the present framework,
the environmental conditions and the properties of the fire are therefore randomly determined. The chosen
probability distributions for these input variables are detailed in Table 2.

The fire scenarios (fire area, heat release rate per unit area and fire growth rate) are not deduced from a
specific analysis of the considered test hall. They are representative of the scenarios commonly validated in
the context of the studies in fire safety engineering, according to the French regulation. In the smoke control
chapter of this regulation, the fire to be taken into account to assess smoke removal systems is conventionally
defined as a fire area called Af [7] whose surface may be 9m2, 18m2, 36m2 depending on the main purpose
of the building. In the present study, a fire area from 9m2 to 36m2 have been considered using an uniform law.

The fire power is classically associated with the heat release rate per unit area Q̇′′f and its evolution is
usually described by empirical design fire curves (Fig. 2) describing a growth step, a steady state and a decay
period. For smoke control engineering studies, usage is to consider Q̇′′f that lies between 300 kW.m−2 and
500kW.m−2, which correspond to a fire of 300kW to 18MW . The bounds have been kept for this study. The
chosen associated law is an uniform one. According to Alpert [8], the rate of fire development, shown on Fig.
2, can be approximated by a parabolic growth (’t2’ time) after the ignition reference time ti as follow:

Q̇f = α(t− ti)2 (1)
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whereα is a fire growth coefficient (kW.s−2), and t the time (s). The coefficientα varies between 0.011338kW.s−2

for a very slowly developing fire and 0.2 kW.s−2 for very fast fire growth [9]. The chosen associated law is an
uniform one.

The fire load densities were typically presented in MJ per unit area of the surfaces bounding the fire building,
as follow:

q′′f =

∫ te

ti

Q̇′′fdt (2)

In the present case, the value of q′′f have an impact of the combustion duration. Usage is to consider q′′f that lies
between 300MJ.m−2 and 500MJ.m−2. The chosen associated law is an uniform one.

The probability distributions for the environmental conditions are also representative of the climatic condi-
tions encountered in France all over the year. Outside mean temperature (denoted as Text) could vary between
−20 ◦C and +40 ◦C, which are mean extreme values found in France according to meteorological survey. The
chosen distribution law is normal with a standard deviation equal to the third of the semi length of the interval
of variation. Inside temperature (denoted as Tint) could vary between +15◦C and +27◦C according to extrema
found in ISO 7730 standard [10]. The chosen distribution law is normal with a standard deviation equal to the
third of the semi length of the interval of variation. For simplicity purposes, the effects on the wind are not
considered in this study. Finally, each input quantity is supposed to be independent.

Table 1: Description of the input variables of the fire code (N: normal, U: uniform).

Variable Name Unit Range Distribution

Patm Atmospheric pressure Pa [98000, 102000] N

Text External temperature K [263.15, 303.15] N

Tint Inside temperature K [290, 303.15] N

α Fire growth rate kW.s−2 [0.011338, 0.20] U

Af Fire area m2 [1, 20] U

Q̇
′′
f Characteristic HRR kW.m−2 [300, 500] U

per unit area

q
′′
f Design fire load density MJ.m−2 [300, 600] U

per unit area

2.4 Output data

In the present study, the variables of interest are three parameters (see Fig. 1) which allow to evaluate when the
building environment reaches compromised tenability conditions: the smoke-laden upper layer temperature TU ;
the lower layer temperature TL; and the position of this interface, also called layer height Zint. These parameter
can be easily estimated from two-zone models like CFAST, as it computes this quantity directly, along with the
average temperature of the upper and lower layers. In a CFD model like FDS, it is far more complex because
there are not two distinct zones, but rather a continuous profile of temperature [6], as illustrated on Fig. 3.

Janssens [11] proposes a method to estimate the layer height and the average temperatures from a contin-
uous vertical profile of temperature. From this approach, FDS considers a continuous function T(z) defining
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Figure 3: Iso-temperature located at the term source (y = 0) at t = 200s Results obtained from a fire area of
13.75m2 and a heat release rate of 487kW.m−2.

temperature T as a function of height above the floor z, where z = O is the floor and z = H is the ceiling. FDS
estimates these quantities:

(H − zint) TU + zint TL =

∫ H

0
T (z) dz = C1 (3)

(H − zint)
1

TU
+ zint

1

TL
=

∫ H

0

1

T (z)
dz = C2 (4)

and resolves this equation in order to estimate the position of the interface

zint =
TL(C1C2 −H2)

C1 + C2 T 2
L − 2TLH

(5)

Finally TU is defined as the average upper layer temperature from:

(H − zint) Tu =

∫ H

zint

T (z) dz. (6)

Further discussion of similar procedures can be found in Ref. [12].
In order do not affect the results, these sensors used to measure TU , TL and zint, are not directly positioned

in the fire plume.
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As these quantities evolve during the fire, one consider here as measurand the maximal value obtained
throughout the simulation for the upper and lower layer temperature and the minimal value of the layer height
zint.

3 Methodology to assess the probability of non conformity of computationally
expensive systems using fast approximations

3.1 Conformity of a computationally expensive system

The probabilistic model associated to numerical experiments is defined as Yi = F (Xi), i = 1, ..., L where F
denotes the computational code (black box) and Xi = (Xi1, ..., XiK)T denotes the column vector of K input
variables, Yi is the model output and L is the number of runs of the code.

Let us denote D the domain of variation of the K input variables.
When dealing with a computationally expensive code with only a small number of simulations possible in

the time of a study, it may be useful to use a faster code and to find the relation (if any) between these cheap
approximations and the expensive more accurate ones through a statistical model.

By increasing the size of the data and using Monte Carlo simulations from the statistical model, this ap-
proach allows to compute indicators and their associated uncertainties that would be intractable otherwise. As
such, the conformity of an expensive system can now be evaluated as a probability of conformity with an
associated uncertainty, which will lead to a more reliable decision indicator.

Given a critical output quantity and a regulatory threshold, the probability of non conformity is the proba-
bility that the expensive (and assumed more reliable) code output exceeds the threshold, and reads

pf = P ({x ∈ D : F (x) > s}) =

∫
1F (x)>sf(x)dx (7)

where f is the joint density of the input variables defined on the domain D, 1F (x)>s = 1 if F (x) > s and
1F (x)>s = 0 otherwise.

3.2 Initial design of experiments

Denote D1 = (x11, ...,x1n1) and D2 = (x21, ...,x2n2) the designs of experiments at the lower level (fast
computations) and at the higher level (expensive computations) respectively, with D2 ⊂ D1 ⊂ D where D is
the domain of variation of the input variables.

Let yT = (yT1 ,y
T
2 ) be the output data, where yT1 = F1(D1) = (F1(x11), ..., F1(x1n1)) and yT2 =

F2(D2) = (F2(x21), ..., F2(x2n2)) denote the outputs of the codes F1 (fast approximations) and F2 (expensive
runs) respectively.

If information or an educated guess are available about the failure domain, some of the points or some
of the coordinates of the points should be fixed accordingly. The remaining points or the initial designs of
experiments should explore the input space and can be obtained with nested latin hypercube designs.

The number of initial points and their distribution on either the higher level or the lower level code depends
on a compromise between the time of a run at each level and its relevance to evaluate the failure probability
(which depends on the number of input variables and the sought probability). If higher level experiments are
too expensive, lower level experiments can be used to predict initial failure points to be evaluated at the higher
level.

7
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3.3 Co-kriging metamodel

For x ∈ D, the co-kriging metamodel is defined as

ỹ2(x) = ρỹ1(x) + δ(x) (8)

The parameter ρ can be interpreted as a regression parameter between the surrogate outputs ỹ1(.) and ỹ2(.)
of the codes F1 and F2 respectively. The term δ(.) controls the variability of ỹ2(.) that is not explained by ỹ1(.)
and is independent from ỹ1(.).

Conditional on hyperparameters β2, σ2δ and ψ2, δ(.) is modelled as a Gaussian process with mean mδ(.) =
h(.)Tβ2 and covariance function kδ(x,x′) = σ2δrδ(x,x

′;ψ2). For x = x′, kδ(x,x′) = σ2δ the variance of the
process δ(.).

Conditional on hyperparameters β1, σ21 and ψ1, ỹ1(.) is modelled as a Gaussian process with meanm1(.) =
h(.)Tβ1 and covariance function k1(x,x′) = σ21r(x,x

′;ψ1). For x = x′, k1(x,x′) = σ21 the variance of the
process ỹ1(.).

As a consequence of model (8), ỹ2(.) is a Gaussian process with mean m2(x) = h′(x)Tβ with h′(x)T =(
ρh(x)T , h(x)T

)
and βT = (βT1 , β

T
2 )T , and covariance function k2(x,x′) = ρ2k1(x,x

′) + kδ(x,x
′). It

follows that the prior variance of the process ỹ2 is obtained as k2(x,x) = ρ2σ21 + σ2δ .

3.4 Estimation of a co-kriging metamodel

For t = {1, 2} let us denote h (Dt) =
(
h(xt1)

T , ..., h(xtnt)
T
)T the column vector of the regression functions

of the code level t evaluated at points inDt. The regression functions h1 and h2 evaluated at data points y form
the block matrix H as follows

H =

 h (D1) 0

ρh (D2) h (D2)

 (9)

For t = {1, 2} let us denote kt (D1,D2) = {kt (x,x′) , x ∈ D1,x
′ ∈ D2} the correlation matrix between

points inD1 andD2 and let us use the shorthand kt (Dt) = kt (Dt,Dt) to denote the correlation matrix between
points in Dt. Note that kt (D1,D2) = kt (D2,D1).

The covariance matrix V of the data points y can be expressed as the following block matrix

V =

 σ21k1 (D1) ρσ21k1 (D1,D2)

ρσ21k1 (D1,D2) ρ2σ21k1 (D2) + σ22k2 (D2)

 (10)

It ensues that the likelihood of data points y is given by

y ∼ N (Hβ, V ) (11)

Denoting Θ =
{
ρ,β, ψ1, ψ2, σ

2
1, σ

2
δ

}
the collection of co-kriging parameters, yields the following analyti-

cal expression of the likelihood

l (y|Θ) ∝ exp

{
−1

2
(y −Hβ)T V −1 (y −Hβ)

}
(12)

Following the approach presented in [13], the parameters of the covariance functions ψ1, ψ2, σ
2
1, σ

2
δ and the

coefficient ρ are estimated by maximum likelihood. Denote φ̂ =
(
ρ̂, ψ̂1, ψ̂2, σ̂

2
1, σ̂

2
2

)
the vector of maximum

likelihood estimates of the vector of parameters
(
ρ, ψ1, ψ2, σ

2
1, σ

2
2

)
given the observations y.

8
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The parameters β are estimated with a Bayesian approach under the non informative prior distribution
p(β) ∝ 1 conditionnally on the observed data y and the estimated vector φ̂.

The posterior mean β̂ of β is obtained as β̂ =
(
HTV −1H

)−1
HTV −1y.

3.5 Prediction from a co-kriging model

The aim is to predict values of the higher level code F2 at untried input values x. Credible values for F2(x)
given the observed data y and the estimated parameters and their uncertainties are embedded in the posterior
predictive distribution [ỹ2 (x) |y].

Following [13], [ỹ2 (x) |y] is a Gaussian Process with mean functionm2,co(.) and covariance function k2,co
with

m2,co(x) = h′(x)β̂ + r(x)TV −1
(
y −Hβ̂

)
(13)

k2,co(x,x
′) = k2(x,x

′)− r(x)TV −1r(x)

+ (h′(x)− r(x)V −1H)T (HTV −1H)−1(h′(x)− r(x)TV −1H) (14)

where r(x)T = cov{ỹ2(x),yT } =
(
ρσ21k1 (x,D1) , ρ

2σ21k1 (x,D2) + σ22
)
k2 (x,D2) is the row vector of

covariance between ỹ2(x) and the observed data yT and h′(x)T =
(
ρh(x)T , h(x)T

)
is the row vector of

regression functions evaluated at x.

3.6 Computation of the probability of non conformity of an expensive system

In this section, we denote ỹ(.) the estimated kriging metamodel of an expensive system F obtained either by
direct kriging of the code, or by co-kriging of two codes. In this latter case, we set ỹ(.) = [ỹ2(.)|y] the kriging
model used to predict the outputs at the higher level F2 derived at section 3.5. We also denote m̂(x) = E(ỹ(x))

and σ̂2(x) = E
(

(ỹ(x)− m̂(x))2
)

the predicted mean and variance at point x respectively.

3.6.1 Probability of excursion

The probability of excursion π(x) is defined for location x ∈ D \ Dn as

π(x) = P (ỹ(x) > s) = P

(
ỹ(x)− m̂(x)

σ̂(x)
>
s− m̂(x)

σ̂(x)

)
= Φ

(
m̂(x)− s
σ̂(x)

)
(15)

where Φ is the cumulative distribution function of the standard Gaussian distribution.
Note that the probability of excursion is not the sought probability of conformity.

3.6.2 Probability of exceeding a threshold

The probability of non conformity pf of a computationally expensive system approximated by a metamodel
ỹ(.) is given by

pf =

∫
1ỹ(x)>sf(x)dx (16)

The best estimator p̂f of pf that minimizes the mean squared error MSE := Eỹ
(
(pf − p̂f )2

)
is (see [14])

9
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p̂f = Eỹ (pf ) =

∫
P (ỹ(x) > s) f(x)dx =

∫
π(x)f(x)dx (17)

where π(.) is the probability of excursion defined in (15).
A measure of uncertainty associated to this estimator is

u2 (p̂f ) = Eỹ
(
(pf − p̂f )2

)
= MSE (18)

For computational reasons the estimators (17) and (18) are computed with Monte Carlo simulations.

Computation of p̂f A Monte Carlo method has been proposed in [15] that relies on sampling realizations
(trajectories) ỹ(k)(.) of the Gaussian Process ỹ(.).

p̂f ≈
1

K

K∑
k=1

pf,(k) (19)

where pf,(k) = P (ỹk > T ) =
∫
D 1ỹk(x)>T f (x) dx.

For a given trajectory k, a Monte Carlo estimation p̂f,(k) of pf,(k) reads

p̂f,(k) =
1

L

L∑
l=1

1m̂(k)(xl)>T (20)

for x1, ...,xL having density f .
Combining (19) and (20) gives the Monte Carlo estimate of the probability of non conformity

p̂f ≈
1

KL

K∑
k=1

L∑
l=1

1m̂(k)(xl)>T (21)

Computation of u (p̂f )

u2 (p̂f ) ≈ 1

K

K∑
k=1

(
p̂f,(k) − p̂f

)2 (22)

where p̂f,(k) is defined in (20) and p̂f is defined in (21).
The Monte Carlo estimate of the measure of uncertainty associated with the probability of conformity (18)

finally reads

u2 (p̂f ) =
1

K

K∑
k=1

(
1

L

L∑
l=1

1m̂(k)(xl)>s − p̂c

)2

(23)

3.7 Sequential co-kriging

Sequential co-kriging consists in sequentially adding points to the database that will be evaluated by the two
code levels to decrease the relative uncertainty (coefficient of variation) of the estimated probability of non
conformity.

Sequentially adding points to a learning database (also called sequential planning) according to a space
filling design brings a global reduction of uncertainty (see [16]). However this approach is not necessarily
pertaining to the problem of determining the failure area and its probability accurately. Indeed when the target

10
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area has a low probability, points have a very low probability to fall in. This is particularly critical in high
dimensional problems.

Specific sequential methods targeting the failure area are required. Such methods have already been devel-
oped to estimate a probability of failure based on a kriging model of a computer code (see [14] and [17]). Since
the posterior predictive distribution of ỹ2(.)|y is a Gaussian process such methods can be applied to ỹ2(.)|y.

Among others, we present and use in the application the targeted Mean Square Error (tMSE) criterion.
Given a current Gaussian process and a current database of n points, the one-at-a-time version of the criterion
allows to select the n+ 1th point as the point satisfying

xn+1 = arg max
x

s2n (x)Wn (x) (24)

In which case,
tMSE (xn+1) = s2n (xn+1)Wn (xn+1) (25)

where

Wn (x) =
1√

2π (s2n (x) + ε2)
exp

−1

2

(
mn (x)− T√
s2n (x) + ε2

)2
 (26)

The tMSE criterion operates a compromise between regions of high predicted variance (high s2n(x)) and
regions located near the predicted frontier controlled by Wn(x).

The tuning parameter ε controls the exploration area around the predicted frontier Γ̃ = {ỹ = T}. For
instance, ε = 0 forces simulation in a close neighbourhood of the predicted frontier whereas ε > 0 allows
a larger exploration. Tuning the value of ε together with smart sampling of candidate points increases the
efficiency of the procedure to select new points.

The tMSE criterion can be extended to sample batches of new points based of the constant liar heuristic
([17]) to allow parallel computations.

Once points have been sampled, they are evaluated by the two code levels and added to the database to
update the posterior predictive co-kriging distribution ỹ2(.)|y. The probability of conformity, its associated
uncertainty and its coefficient of variation are computed according to section 3.6.2 and if the latter is higher
than a stopping value, the process of sampling new points is iterated on the updated Gaussian process.

A flowchart of the complete procedure of sequential co-kriging is given at figure 4.

4 Application to the fire engineering case study

In this application, the critical output quantity is the maximum value of the upper layer temperature TU defined
in section 2.4. Non conformity corresponds to TU > 200◦C where the threshold 200◦C is the tenability
threshold defined in section 2.1. The aim of this section is to estimate the probability of non conformity
P (TU > 200◦C) and its associated uncertainty with kriging based methods (among them is the sequential
co-kriging method), which are respectively denoted p̂f and u(p̂f ).

4.1 Sensitivity analysis

A sensitivity analysis showed that among the 7 input variables described in table 1, only Af and Q̇
′′

have an
impact on the threshold exceedance.

From now on, the fire engineering case study will thus be treated in a 2D framework in the domain D =
Af × Q̇

′′
= [1, 20]× [300, 500] with the other variables kept constant.

11
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Figure 4: Flowchart of the sequential co-kriging procedure.

4.2 Monte Carlo baseline results

The computation of Monte Carlo estimators of the probability of conformity, its uncertainty and its coefficient
of variation is applied to the results of 100 FDS simulations and yields p̂MC

f = 0.13, u(p̂MC
f ) = 0.033 and

cv(p̂MC
f ) =

u(p̂MC
f )

p̂MC
f

= 0.25 respectively.

It follows that nearly 50, 000 runs are required to reach cv = 1%, which is impracticable : if 100 cores/day
are available, then the total simulation time amounts to 500 days. Besides, as the sought probability gets
smallers, the number of Monte Carlo runs needed increases (for a given cv). For instance, for a probability of
5% reaching cv = 1% requires more than 200, 000 runs.

In more complex configurations (where 1 run is usually more than 1 week), 100 FDS runs is still too many
and only a few simulations can be run.

4.3 Kriging and co-kriging models

Initial database The initial database evaluated by CFAST (F1)comprises 9 points displayed in figure 5,
among them 5 points (in red) are evaluated by FDS (F2). Voluntarily, no FDS points exceed the threshold.

Parameters of the Gaussian processes Each Gaussian process is modelled with the mean function h(.) =
(1Af ) to account for the linear effect of Af on the output, and with the matérn5 2 covariance function to

12
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Figure 5: Initial database and initial level plot of the probability of excursion function. In green, the points that
are only evaluated by CFAST; in red, the points that are evaluated by CFAST and FDS.

account for smoothness of the output. The matérn5 2 covariance function (see [18]) is defined as a function of
r = |x− x′| as

kν=5/2(r) =

(
1 +

√
5r

θ
+

5r2

3θ2

)
exp

(
−
√

3r

θ

)
(27)

where the parameter θ controls the length scale.
The parameters of the co-kriging models have been estimated with the R package MuFiCokriging [19]. The

parameters of the kriging models have been estimated with the R package [20].

Number of kriging based Monte Carlo simulations to compute probabilities of non conformity with the
notations of section 3.6.2, K = 1000 trajectories and L = 1600 points on a 40× 40 grid.

4.4 Numerical interpretation of the results

Remark In this report, the additional FDS points required to carry out the sequential co-kriging method have
been replaced by the predicted mean of the current metamodel of FDS at each iteration. Actual additional FDS
points will be displayed in the paper following this deliverable. Thus, the following interpretation of the results
should not lead to an overvalued efficiency of the sequential co-kriging method.
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A comparison of various kriging based methods has been carried out on the fire engineering case study to
show the influence of the number of points in the database and the influence of their location on the estimates
of the probability of conformity and its accuracy (relative uncertainty). Results are displayed in table 2.

The point estimate produced by the kriging model (p̂f = 0.1349) built on the 100 points is very close to
the point estimate computed with the Monte Carlo method on the same points (p̂f = 0.13). However, the
kriging based estimate is much more accurate (cv(p̂f ) = 0.0416 versus cv(p̂f ) = 0.25). The reason is that
kriging based estimates involve a lot of cheap simulations from the metamodel that increase the accuracy of
the estimation. It is important to notice that both estimations seem to be biased (much lower values than the
sequential co-kriging method) but that the kriging model tends to produce a higher value of the estimate.

For the same number of FDS runs (5 runs) co-kriging reduces the relative uncertainty of the point estimate.
A relative uncertainty divided by 3 (cv(p̂f ) = 0.13 versus cv(p̂f ) = 0.3968) was obtained at the cost of 4
cheap CFAST simulations. This shows the positive impact of combining expensive runs with cheap runs.

Final results of the sequential co-kriging show a dramatic decrease of the relative uncertainty with respect
to co-kriging results (cv(p̂f ) = 0.0078 versus cv(p̂f ) = 0.13) at a cost of only 6 smartly chosen new expensive
runs. This relative uncertainty is also much lower than the one obtained with kriging based on 100 expensive
runs (cv(p̂f ) = 0.0078 versus cv(p̂f ) = 0.0415). Besides these results are twice as accurate as the results
obtained with 100 expensive FDS simulations (cv(p̂f ) = 0.13 versus cv(p̂f ) = 0.25).

number of FDS runs type of analysis p̂f u(p̂f ) cv(p̂f )

5 kriging 0.1634 0.0648 0.3968

5 co-kriging 0.172 0.022 0.13

100 kriging 0.1349 0.0056 0.0415

100 Monte Carlo 0.13 0.033 0.25

5 + 3× 2 sequential co-kriging 0.1710 0.0013 0.0078

Table 2: Summary results of the probability of non conformity p̂f , its associated uncertainty u(p̂f ) and its
coefficient of variation (relative uncertainty) cv(p̂f ) obtained with various kriging based methods.

4.5 Graphical interpretation of the sequential co-kriging results

Results obtained at each iteration of the sequential co-kriging procedure (see section 3.7) are displayed in table
3. The first line (iteration 0) gives the co-kriging based Monte Carlo estimates obtained with the initial database
(9 points including 5 expensive FDS simulations) displayed at line 2 of table 2.

The contour plot of the posterior probability of excursion function on the full domain provides a graphical
tool to assess the efficiency of the iterative algorithm.

The initial contour plot displayed on figure 6a shows a large dispersion of the level lines, representing the
uncertainty on the predicted frontier between non conformity (white area) and conformity (black area). For
instance the predicted 0.5 line indicates that there is 50% chance that the non conformity domain lies above this
line and the predicted 0.9 line indicates that there is 10% chance that the non conformity domain lies above this
line.

As points are sequentially added to the database, the uncertainty is reduced. The first two points added
(see figure 6b) (red crosses) have a high predicted variance in the target area, as they are far from FDS points
(red triangles). Their predicted mean is close to the threshold so that the level lines interpolate the points. The
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iteration number of added points p̂f u(p̂f ) cv(p̂f )

0 - 0.172 0.022 0.13

1 2 0.1707 0.0076 0.0446

2 2 0.1709 0.0023 0.0132

3 2 0.1710 0.0013 0.0078

Table 3: Summary results of the probability of non conformity p̂f , its associated uncertainty u(p̂) and its
coefficient of variation (relative uncertainty) cv(p̂f ) obtained at each iteration of the sequential procedure.
Iteration 0 gives the baseline results obtained with the initial database (9 points).

lines are also narrowed in between, close to an initial FDS point, which shows the effect of this point given the
additional knowledge.

The next two points added (see figure 7a) have also a predicted mean close to 200◦C and yield reduced
uncertainties so that 1-probability of non conformity zones appear.

(a) Baseline : points of the initial database (b) Iteration 1: add 2 points

Figure 6: Contour plot of the initial probability of excursion (a) and the updated probability of excursion after
2 points have been added at the first iteration of the sequential co-kriging procedure (b).

Finally, two more points are needed (see figure 7b) to reach cv ≤ 1%, with the effect of creating a 1-
probability of non conformity zone, which means that fires starting with coordinates lying in this zone will lead
to non conformity (UL > 200◦C).
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(a) Iteration 2 : add 2 points (b) Iteration 3 : add 2 points

Figure 7: Contour plot of the updated probability of excursion at the second iteration of the sequential co-
kriging procedure (a) and at the third iteration (b).

5 Conclusion

The methodology presented in this document to assess the conformity of an expensive computational code has
proved efficient to overcome too parcimonious evaluations from an expensive code when fast approximations
are available. This method builds on the kriging models usually used to model code outputs, to improve the
predictions of the kriging model of the expensive code. Another desirable feature is that the method allows
smart sampling of new points targeting the non conformity domain in order to further reduce the uncertainty
of the probability of non conformity. Although demonstrated in a simple but realistic case study, the method is
flexible to take into account more complex relationships between the two codes in higher dimensional problems.
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