

Microwave and Optical Atomic Clocks Patrick Gill National Physical Laboratory

National Measurement System

Outline

- Cs Fountain Microwave clocks realising the SI second
- Evolution of atomic clocks → redefinition of the second
- Architecture of optical clocks
- Performance of optical clocks
- Science & technology applications of optical atomic clocks
- Comparison of remote high-accuracy optical clocks

Applications of atomic clocks

- Realisation of SI units
 Time (UTC and TAI) and Length
- Fundamental physics
 Tests of QED, general relativity
 Measurements of fundamental constants
 Searches for time-variation of fundamental constants

Direct measurement of earth's geoid with high resolution (cf GRACE, GOCE, NGGM)

- Satellite navigation and ranging
 GPS, Galileo and deep space missions
- Telecommunications internet synchronisation
- Astronomy and survey
 Star and planetary survey using VLBI
 Distributed antenna array synchronisation

Evolution of atomic clocks

In the future a new optical definition for the second will be needed:

When?: - optical progress slowed

- candidate systems fully evaluated
- remote clock comparisons

Definition and Realization of the Second

Today's best realization

cloud of Cs atoms laser cooled to few μK in magneto-optic trap

cold atoms are then launched vertically by laser light

atoms undergo Ramsey excitation in microwave cavity

fraction of excited atoms are detected by laser beams

- < 5x10⁻¹⁶ systematic uncertainty
- < 50 ps per day
- contribute to TAI
- several fountains worldwide
- Underpins optical freq meas.

Cs cold collisional shift cancellation: Szymaniec et.al. Phys Rev Lett 2007 (NPL / NIST / PTB)

Comparison of Cs fountains

Compiled from all data published in Circular T during the period March 2008 – May 2011

T. E. Parker, Rev. Sci. Instrum. 83, 021102 (2012)

Advantage of optical clocks

Clock frequency stability:

instability
$$\sigma \propto \frac{\Delta f}{f} \frac{1}{(S/N)}$$

$$\sigma(\tau) = \frac{1}{2\pi f \sqrt{NT_{\rm int}\tau}}$$

Where f and Δf are frequency and width of atomic reference transition

Optical clocks

- Based on forbidden optical transitions in ions or atoms
- Frequencies $f \sim 10^{15}$ Hz, natural linewidth Δf typically 1 Hz ie Q-factor $\sim 10^{15}$ (or even higher)
- Better stabilities than microwave clocks
- Better clock stability facilitates evaluation of lower uncertainties
- Better time resolution (clock "ticks" faster)

Single ion N = 1

Atoms in a lattice $N = 10^3 - 10^6$

Comment on possibilities for a redefinition of the second

Optical clock definition based on a cold atom or ion:

- How to choose the best transition (lowest uncertainty? system investigated by most NMIs?)
- There will likely be a number of candidates with uncertainties within a factor of a few of each other
- One could operate with 1 cold ion / atom primary standard plus several other secondary representations
- Comb transfer would provide primary-secondary linkage with no loss of accuracy

Most likely option at this time

Set of comb-measured frequency ratios:

- In effect, similar to above, if anchored to an optical transition
- Need to ensure consistency between data derived via ratios and Cs-related measurements to avoid disconnects.

Optical clock architecture

Types of atomic reference:

- Dual ion quantum logic clock
- Neutral atoms on optical lattice

Single ion clock

NPL end-cap trap:

"Single ion virtually at rest & isolated from environment"

Neutral atom lattice clock

N atoms → stability ∝ √N and controllable systematics

Optical lattice trap

Dual ion quantum logic clock

Clock ion sympathetically cooled by logic ion Clock data read out by logic ion using entanglement

Redefinition candidates: Which ion or atom?

- Some systems now have estimated uncertainties below Cs
- Absolute accuracy No better than Cs value until redefinition

Single ion quadrupole clocks:

Comparison of PTB & NPL measurements

Excellent agreement between 2 separate expts in different labs

NPL: King et al. New J. Phys 2012

PTB: Huntemann et al.: Phys. Rev Lett 2012

²⁷Al⁺ species as a single ion clock

	Clock transition: Clock linewidth:	267 nm (SHG + SHG of 1070 nm) 8 mHz
√√ √√ √	Frequency shift: sensitivities	smallest known blackbody shift, negligible electric quadrupole shift small quadratic Zeeman shift
X	Cooling transition	n: 167 nm, not accessible, deep UV

So, how to overcome cooling transition problem?

Quantum Logic Clock proposal: Wineland et al: 6th Symp Freq Stds & Met 2001

Separate clock functionality from cooling functionality

2 different ion species held in linear ion trap

Cooling of and communication with Al+ via coulomb interaction of ions

Driving the actual AI⁺ $^{1}S_{0} - ^{3}P_{0}$ clock transition with quantum logic

Read-out of the Al⁺ clock state by mapping back onto Be⁺ ion via entanglement

Rosenband et al. Phys Rev Lett 98 220801 (2007)

NIST comparison of 2 quantum logic Al+ clocks

National Physical Laboratory

Frequency inaccuracy: 8.6 x 10⁻¹⁸

Frequency instability: $2.8 \times 10^{-15} \tau^{-1/2}$

Measurement uncertainty: 7 x 10⁻¹⁸

Frequency difference -1.8 x 10⁻¹⁷

between AI+ clocks:

Al^{+ 1}S₀ – 3 P₀ clock transition linewidth Chou et al. Science 2010

Chou et al. Phys. Rev. Lett 104 (2010)

Neutral atom optical lattice clock (eg Sr, Yb, Hg)

Sr ¹S₀ – ³P₀ clock transition 1 mHz wide natural linewidth

Optical Lattice to hold the atoms

Off-resonant standing wave laser field

→ Light-shift generated trapping sites with sub-λ spacing

But weak lattice light trapping potential, so

- 2-stage pre-cooling in magneto-optical trap to get to low enough temperatures
- Higher laser powers needed for the trapping, cooling & lattice beams
- → Storage/interaction times of seconds
- → many atoms, good for stability
- →No 1st order Doppler effect (Lamb-Dicke regime)
- → Collisional shifts small if 1 atom per site BUT How to deal with AC stark shift (light shift)?

Optical lattice trapping sites

Optical lattice confinement without light shifts

- Sr ¹S₀-³P₀ clock has ~ 1 mHz natural linewidth but have to avoid broadening and shifts
- Light shift magnitude results from the difference in AC Stark shift caused by off-resonant lattice trapping beam on ¹S₀ and ³P₀ levels
- Minimise overall light shift by tuning to "magic λ" where ¹S₀ and ³P₀ contributions cancel out

 - → But need better LO performance
 & more data on frequency shifts

Sr lattice clock: Absolute frequency measurements

Falke et al, Metrologia 2011

Black-body shifts (Mitroy et al 2010)

Row 2: Relative Black-body shift (x10⁻¹⁶) at 300 K

Row 3: Black-body shift at 300 K (x10⁻¹⁸) for 1 K change

Ion / atom	¹⁹⁹ Hg ⁺	²⁷ AI+	¹⁹⁹ Hg	¹⁷¹ Yb ⁺ octupole	¹¹⁵ ln+	¹⁷¹ Yb ⁺ quad	⁸⁸ Sr ⁺	⁴⁰ Ca ⁺	¹⁷¹ Yb	⁸⁷ Sr
x10 ⁻¹⁶	_	0.07	1.6	1.6	2.0	5.3	5.6	9.2	26	55
x10 ⁻¹⁸	_	0.1	2.1	2	2.7	7	7.4	12.2	35	73

Issues (lons): Temperature shielding, low rf drive power for avoidance hot-spots (atoms): Temperature shielding, hot oven and thermal beam, mag field coils

So how good are optical clocks right now?

Reported uncertainty

Al+ ion quantum logic clock: 9x10⁻¹⁸

Hg+ ion cryogenic ion clock: 2x10⁻¹⁷

Sr+ ion quadrupole clock: 2.1x10⁻¹⁷

Yb+ ion octupole clock: 7x10⁻¹⁷

Sr neutral lattice clock: 1.5x10⁻¹⁶

Yb neutral lattice clock: 3.4x10⁻¹⁶

Cs fountain clock systematic unc: 2x10⁻¹⁶ (best)

But its work in progress & other systems under evaluation......

Search for time variations in fundamental constants: eg Fine structure constant (α)

$$\left(\begin{array}{c} \frac{\dot{v}}{v} = S \frac{\dot{\alpha}}{\alpha} \end{array}\right)$$

- Currently, $v(A|_{+}) / v(A|_{+})$ ratio = 5.2x10⁻¹⁷ \rightarrow (-1.6 \pm 2.3) x10⁻¹⁷
- E2 and E3 transitions in Yb+ ion clocks have large and opposite sensitivities to any time variation of α (sensitivity factor ~ x7)
- Two clocks in the same ion probed at the same time
- Some systematic shifts (e.g. gravitational redshift, second-order Doppler shift) cancel exactly when ratio is measured in the same, single ion
- Black body correction not necessary

$$(v_{435} / v_{467} \sim 10^{-17} \rightarrow d\alpha/dt \sim 2x10^{-18} \text{ per year})$$

Demonstration of relativistic time dilation in the lab

Typically needed large velocities approaching *c*

$$\Delta f/f_0 \sim -\langle v^2 \rangle / 2c^2$$

With optical clocks, can now observe this with slow velocities in the lab:

$$\langle v^2 \rangle = (\beta f_{RF} \lambda)^2 / 2$$

DC offset voltage applied to trap increases ion's micro-motion and modulation index

Chou et al, Science 2011

Demonstration of gravitational red-shift in the lab

National Physical Laboratory

Chou et al, Science 2011

Red-shift between 2 clocks separated in height close to Earth surface:

$$\Delta f/f_0 = g.\Delta h / c^2 \sim 10^{-16} \text{ per metre}$$

Previous demos required large height differences (10 – 10⁴ km)

Raising one Al⁺ ion clock by 33 cm relative to 2nd clock:

$$\rightarrow \Delta f/f_0 = (4.1 \pm 1.6) \times 10^{-17}$$

→ Implications for future geodesy with optical clocks at the cm – mm level

How well can we compare optical frequencies?

Uncertainty between combs locked to the same optical reference:

1.4 x 10⁻¹⁹

Direct comparison of remote clocks

Highly desirable prior to any redefinition, but how?

 2-way satellite frequency transfer 10⁻¹⁵ per day, ACES should do better

 Optical ground → satellite & satellite → satellite In its infancy, some proving expts targetting 10⁻¹⁶ per day

Portable clocks
 trade-off accuracy v compactness
 but ESA looking to space clocks

 Optical frequency transfer by fibre 10⁻¹⁸ in minutes demonstrated, but coverage issues

EMRP

European Metrology Research Programme proposal

So where are the fibre links?

900 km dark fibre link between PTB and MPQ

- A pair of 900 km dark fibers
- Attenuation > -200dB
- 8 Container stations for
 - 1. Amplification
 - 2. Fiber Stabilization

 An optical communication channel allows for remote access to the EDFAs

LPL-SYRTE frequency transfer demo on internet fibre

Target:
Link from Paris
to Strasbourg

	σ _y @1 s	σ_y @ $10^4 \mathrm{s}$
86 km (urban dark fiber)	2x10 ⁻¹⁶	8x10 ⁻²⁰
108km with Internet Data	4x10 ⁻¹⁶	8x10 ⁻²⁰
2x150km with fiber spools	4x10 ⁻¹⁶	~6x10 ⁻²⁰
2 x150km multiplex link (urban+backbone)	3x10 ⁻¹⁵	4x10 ⁻¹⁹

Remote frequency comparison over UK fibre network

Optical carrier transfer

•1.5 µm ultrastable laser under development for test expts on the JANET Aurora network

 Access to international routes is being explored (eg Geant)

Collab with UCL, London

JANET Aurora dark fibre network

Transfer of an optical frequency comb (simultaneous optical + microwave)

Marra et al. Opt Lett. 2011

Simultaneous transfer of 10⁴ equally-spaced optical frequencies + μwave freq. (rep-rate)

Collab.with ORC, University of Southampton

NPL Dark fibre links coming on line early 2013

Possibilities for a London (NPL) to Paris (SYRTE) link via Geant

Frequency transfer comparison of ACES Microwave Link with Optical Fibre links?

ACES due for launch to ISS 2014/15

- On-board Cs and maser clocks
- MWL link allowing remote clock comparison of European highaccuracy clocks in common view
- Projected comparison accuracy at ≤10⁻¹⁶

Potential for direct comparison of frequency transfer via ACES MWL and via upcoming optical fibre links between TAI labs

Euro-Fibre network evolving for high-accuracy frequency transfer

¹⁷¹Yb⁺ Single ion octupole and quadrupole clock transitions

NPL ©

- Electric octupole transition
 Very weak transition at 467 nm
- Natural linewidth ~ nHz
 Limited by probe laser linewidth
- Odd isotope
 → hyperfine levels, but
- m_F = 0 → m_F = 0 transition
 Free from linear Zeeman shift
 Small quadratic Zeeman shift
- AC Stark shift
 High intensity needed, but shift small with sub-Hz lasers
- Very small quadrupole shift

Electric quadrupole transition at 435 nm
 3 Hz natural linewidth

Optical "master" clock(s) in space

- Could meet requirement for high accuracy (10⁻¹⁸ level) intercomparison of remote (trans-atlantic) ground-based optical clocks
- ACES target of 10⁻¹⁶ @ 1 day not sufficient

- Common-view comparison via optical master clock(s)
- Geostationary orbit(s)
- Gets over the geoid problem:
 10⁻¹⁸ gravitational redshift for 1 cm height difference on the ground
- Altitude determination to 40 cm required for 10⁻¹⁸ accuracy
- Also available for other applications