Logo PTB

Oberflächenmesstechnik

Fachbereich 5.1

 

Willkommen auf der Oberfläche

Aufgaben

Der Fachbereich 5.1 - „Oberflächenmesstechnik“

  • ist zuständig für die Rückführung von Längen und von Kenngrößen in der Oberflächenmesstechnik, d.h.
  • die Kalibrierung von Stufen- und Tiefeneinstellnormalen Opens internal link in current window
  • die Kalibrierung von Raunormalen Opens internal link in current window
  • die Kalibrierung von Härtevergleichsplatten Opens internal link in current window
  • die Kalibrierung der Schichtdicke Opens internal link in current window
  • die Kalibrierung der Biegesteifigkeit von Cantilevern und der Steifigkeit von MEMS Opens internal link in current window
  • arbeitet an Normen und Richtlinien für Oberflächenmesstechnik in den nationalen (VDI, DKD, DIN) und internationalen Gremien (ISO, IMEKO) mit
  • betreibt und unterstützt die Entwicklung von Normalen und Prüfkörpern im Bereich der Oberflächenmesstechnik, d.h. für taktile-, optische- und rasterkraftmikroskopische Verfahren sowie für die Härte- und Schichtdickenmesstechnik
  • ist aktiv im Bereich der Forschung und Entwicklung neuer Messgeräte und Messverfahren sowie Algorithmen zur Analyse für die Auswertung von Daten.

Forschung

Opens internal link in current windowProfilscanner

Schnelle Oberflächenmessungen (Rauheit, E-Modul, Härte, Ablagerungen) mit Si-Mikrotastern in Einspritzdüsen.

Opens internal link in current windowLichtinduzierte Kraft

Nachweis der theoretisch vorhergesagten Lichtanziehung zischen planparrallelen Platten mit geringem Abstand.

Monoatomare Stufennormale

Verfahrensprozess und Messmöglichkeiten an monoatomaren Stufen auf ansonsten atomar glatten SI-Oberflächen.

Laterale Auflösungsnormale

Geometrie, Herstellung, Messung und Auswerteverfahren lateraler Auflösungsnormale für die Mikroskopie und taktile Messverfahren

Opens internal link in current windowSoftwareentwicklung zur Rauheitskenngrößenbestimmung

Entwicklung von Softwarenormalen zur Bestimmung der Rauheitskenngrößen aus Oberflächenmesswerten.

Informationen und die wichtigsten Veröffentlichungen des Fachbereichs

Informationen

 

Opens external link in new windowNanoScale 2016 in Wrocław, Polen
vom 9. bis 11. März 2016


Organisation des Seminars in Zusammenarbeit mit der Technischen Universität Wrocław, Opens external link in new windowFaculty of Microsystem Electronics and Photonics, Prof. Dr. Teodor Pawel Gotszalk und der PTB.
Das Seminar beschäftigte sich mit Themen der quantitativen Mikroskopie, Kalibrierungen im nanoskaligen Bereich sowie mit Messvorgaben und Normen. Die Seminarveranstaltung fand seit 1995 nun zum 11. mal statt. Opens external link in new windowmehr.

 

Ausgewählte Veröffentlichungen

Opens external link in new windowFinal report on APMP.L-K8: International comparison of surface roughness
Baker, A., Tan, S. L., Leach, R., Jung, L., Wong,  S.Y., Tonmueanwai, A., Naoi, K., Kim, J., Renegar, T B , Chaudhary, K P.,
Metrologia, Technical Supplement 50 (2013) 04003, dx.doi.org/10.1088/0026-1394/50/1A/04003

Opens external link in new windowDevelopment of a traceable profilometer for high-aspect-ratio microstructures metrology.
Xu, M., Kirchhoff, J. & Brand, U. Surf. Topogr. Metrol. Prop. 2  (2014) 024002

Opens external link in new windowCharacterization of a traceable profiler instrument for areal roughness measurement
Thomsen-Schmidt, P., Measurement Science and Technology 22 (2011) 094019

Opens external link in new windowIn-situ nondestructive characterization of the normal spring constant of AFM cantilevers.
Gao, S. & Brand, U.  Meas. Sci. Technol. 25 (2014) 044014

Opens external link in new windowNanoindentation
Michailidis, N.; Bouzakis, K.-D.; Koenders, L.; Herrmann, K.; CIRP encyclopedia of production engineering (2014)

Opens external link in new windowA nanonewton force facility to test Newton’s law of gravity at micro- and submicrometer distances
Nesterov, V., Buetefisch, S., Koenders, L.,  Ann. Phys. (Berlin) 525 (2013) 728–737 DOI 10.1002/andp.201300057

Opens external link in new windowLight-induced attractive force between two metal bodies separated by a subwavelength slit,
Nesterov, V., Frumin, L.,  Meas. Sci. Technol. 22 (2011) 094008

Opens external link in new windowImproved measurement results for the Avogadro constant using a 28Si-enriched crystal
Azuma, Y.; Barat, P.; Bartl, G.; Bettin, H.; Borys, M.; Busch, I.; Cibik, L.; D'Agostino, G.; Fujii, K.; Fujimoto, H.; Hioki, A.; Krumrey, M.; Kuetgens, U.; Kuramoto, N.; Mana, G.; Massa, E.; Meeß, R.; Mizushima, S.; Narukawa, T.; Nicolaus, A.; Pramann, A.; Rabb, S. A.; Rienitz, O.; Sasso, C.; Stock, M.; Vocke Jr, R. D.; Waseda, A.; Wundrack, S.; Zakel, S.; Metrologia (2015)

Opens external link in new windowPositioning errors in coherence scanning interferometers: determination of measurement uncertainties with novel calibration artifacts
Boedecker, S.; Rembe, C.; Krüger-Sehm, R.; Felgner, A.; Fringe 2013: 7th International Workshop on Advanced Optical Imaging and Metrology (2014)    

Opens external link in new windowModelling and simulating scanning force microscopes for estimating measurement uncertainty: a virtual scanning force microscope
Xu, M., Dziomba, T., Koenders, L.,, Measurement Science and Technology 22 (2011) 094004

Opens external link in new windowThe European nanometrology landscape
Leach, R.; Boyd, R.; Burke, T.; Danzebrink, H.-U.; Dirscherl, K.; Dziomba, T.; Gee, M.; Koenders, L.; Morazzani, V.; Pidduck, A.; Roy, D.; Unger, W. E. S.; Yacoot, A.; Nanotechnology 22 (2011)  062001, doi:10.1088/0957-4484/22/6/062001

Opens external link in new windowAspects of scanning force microscope probes and their effects on dimensional measurement
Yacoot, A., Koenders, L., Journal of Physics D: Applied Physics, V41 (2008) 103001