Tabellen und Diagramme zu Kapitel 8

Struktur und Eigenschaften der Materie

- Structure and properties of matter Redakteur: A. Scharmann

8.01	Verschiedene Eigenschaften von Festkörpern – Various properties of solids (W. Hemminger)	529
8.02	Verschiedene Eigenschaften von Flüssigkeiten – Various properties of li- quids (W. Hemminger)	532
8.03	Verschiedene Eigenschaften von Gasen – Various properties of gases (W. Blanke)	534
8.04	Abschätzung typischer Intensitäten von Molekularstrahlquellen in Strahl- richtung als Funktion der Molekülenergie – <i>Estimate of typical intensities</i> of molecular beam sources within the beam direction as a function of the energy of molecules (K -H. Schartner)	540
8.05	Die sieben Kristallsysteme und die vierzehn Bravais-Gitter – <i>The seven</i> crystal systems and the fourteen Bravais lattices (H. Bradaczek u. G. Hil- debrandt)	540
8.06	Kristallstruktur der wichtigsten Elemente und einfacher chemischer Ver- bindungen – <i>Crystal structure of the most important elements and of simple chemical compounds</i> (H. Bradaczek u. G. Hildebrandt)	541
8.07	Relativistisch korrigierte de Broglie-Wellenlängen λ des Elektrons im Energiebereich $E = 10^2$ bis 10^7 eV – <i>Relativistically corrected de Broglie</i> wavelengths λ for electrons of energies between 10^2 and 10^7 eV (R. Lauer)	544
8.08	Neutronenstreulängen und Wirkungsquerschnitte – Neutron scattering lengths and cross sections (V.F. Sears u. R. Scherm)	544
8.09	Teilchenausbeuten beim Ionenbeschuß von Festkörpern – Particle yields from ion-bombarded solids (H. Oechsner)	555
8.09a	Gesamtausbeuten Y_{tot} (Atome/Ion) bei der Festkörperzerstäubung durch Ionenbeschuß (Sputtering) – <i>Total sputtering yields</i> Y_{tot} of solids	
0.001	(atoms/ion)	555
0.090	dierten Metalloberflächen beim Beschuß mit Ar ⁺ -Ionen von 2,5 keV un-	
	ter 70° gegen die Flächennormale (nach Benninghoven) – Secondary ion yields Y_{Me^+} (Me ⁺ ions/primary ion) at clean and at oxidized metal surfaces under bombardment with 2,5 keV Ar ⁺ -ions under 70° with respect to the	
579	normal (of the surface) (H. Oechsner)	555
8.10	Ioneninduzierte Elektronenausbeuten γ für reine polykristalline Targets bei senkrechtem Beschuß mit Ar ⁺ -Ionen von 1 keV – <i>Ion induced electrons</i>	
	Ar ⁺ -ions of 1 keV (H. Oechsner)	556
		000

8.11	Elektronenaustrittsarbeit Φ von verschiedenen Elementen (polykristalline Proben) in eV (nach Michaelson und Hölzl u. Schulte) – <i>Electronic work</i> <i>function</i> Φ <i>of different elements (polycrystalline samples) in</i> eV (H. Jahr-	
	reiss)	556
8.12	Elektronenaustrittsarbeiten Φ_{hkl} in eV aus bestimmten niedrig indizier- ten Netzebenen von Einkristallen ausgewählter Metalle – <i>Electronic work</i> <i>function</i> Φ_{hkl} <i>in</i> eV <i>of single-crystalline metals measured in the direction of</i>	
	low-index planes (H. Jahrreiss)	557
8.13	Elektronenaustrittsarbeiten fremdstoffbedeckter und oxidierter Metalle in eV (nach Herrmann u. Wagener und Kluge) – <i>Electronic work function of</i>	
	<i>impurity-covered and of oxidized metals in</i> eV (H. Jahrreiss)	557
8.14	Kernmagnetische Momente und Spinresonanzdaten – Nuclear magnetic	
	moments and spin resonance data (A. Hofstaetter)	557
8.15	Ionenleitfähigkeiten Λ_{∞}^+ , Λ_{∞}^- in wässeriger Lösung – <i>Ionic conductivities</i>	
	Λ_{∞}^+ , Λ_{∞}^- in aqueous solutions (W. Seidel)	568
8.16	Leitfähigkeit von Salzschmelzen – Conductivity of molten salts (W. Seidel)	568
8.17	Überführungszahlen ti der Ionen in festen Leitern – Transference numbers	
	t; of ions in solid conductors (W. Seidel)	569
8.18	Spezifische Leitfähigkeit wässeriger KCl-Lösungen - Specific conductivi-	
	ties of aqueous KCl-solutions (W. Seidel)	570
8.19	Standard-Redoxpotentiale in wäßrigem Elektrolyten in V (bezogen auf die	
	Standard-Wasserstoffelektrode) - Standard potentials in aqueous solution	
	in V (vs. the standard hydrogen electrode) (B. Kastening)	570
8.20	Nulladungspotentiale in V (gegen die Standard-Wasserstoffelektrode) –	
	Potentials of zero charge in V (vs. the standard hydrogen electrode) (B. Ka-	
	stening)	571
8.21	Kinetische Daten ausgewählter Redox-Reaktionen an verschiedenen Me-	
	tallen in wäßriger Lösung – Kinetic data of selected redox reactions at va-	
	rious metals in aqueous solutions (B. Kastening)	572
8.22	Permittivitätszahlen und Verlustfaktoren wichtiger Isolierstoffe bei Raum-	
	temperatur, falls nicht anders angegeben – Permittivities and loss factors	
	of important insulating materials at room temperature (P. Thoma)	573
8.23	Permittivitätszahlen der wichtigsten Ionenkristalle – Permittivities of the	
1111	most important ionic crystals (P. Thoma)	577
8.24	Die thermoelastodielektrischen Materialkonstanten zweiter Ordnung mit	
	Darstellung ihres Zusammenhangs durch das Heckmann-Diagramm – The	
	thermoelastodielectric material constants of second order with a represen-	
	tation of their interrelation by means of the Heckmann diagram (P. Thoma)	578
8.25	Fermi-Energie $E_{\rm F}$ einiger Metalle – Fermi energy $E_{\rm F}$ of some metals	
24.95 %	(E.Braun)	579
8.26	Spezifischer elektrischer Widerstand ρ_0 bei 0 °C. Temperaturkoeffizient	
112 12 1	des elektrischen Widerstandes α und Debve-Temperatur $\Theta_{\rm D}$ von reinen	
	Metallen – Electrical resistivity o_0 at 0°C, temperature coefficient of the re-	
	sistivity α and Debye temperature Θ_{D} of pure metals (E.Braun)	579
8.27	Atomare Widerstandserhöhung $\Delta \rho_{A}$ und $\Delta \rho'_{A}$, für verschiedene in Kun-	01.8
	fer gelöste Metalle – Atomic resistivity increase Δo_A und $\Delta o'_A$ of different	
	metals dissolved in copper (E. Braun)	580
8.28	Grüneisen-Funktion $G(\vartheta) - Grüneisen function G(\vartheta)$ (E. Braun)	581

8.29	Mittlere Druckkoeffizienten des elektrischen Widerstandes γ_p in 10^{-11} m ² /N für Drücke bis zu $7 \cdot 10^8$ N/m ² bei 0 °C – <i>Mean pressure coefficients of the electrical resistivity</i> γ_p <i>in</i> 10^{-11} m ² /N <i>for pressures up to</i> $7 \cdot 10^8$ N/m ²	
	<i>at</i> 0 °C (E.Braun)	582
8.30a	Die thermoelektrische Spannungsreihe – Thermoelectric series (E. Braun)	582
8.30b	Thermospannungen in mV nach DIN 43710 für einige gebräuchliche	
	Thermoelemente-Thermoelectric voltages in mV according to DIN 43710	
	for some common thermocouples (E.Braun)	582
8.31	Kenndaten von Supraleitern – Properties of superconductors (E. Braun) .	584
8.31a	Supraleitende Elemente – Superconducting elements	584
8.31b	Supraleitende Verbindungen und Legierungen vom Typ II mit hohen kriti-	
	schen Flußdichten – Type II superconducting compounds and alloys	584
8.31c	Hochtemperatur-Supraleiter – High temperature superconductors	584
8.32	Kenndaten von Halbleitern – Properties of semiconductors (E. Braun)	585
8.32a	Elementare Halbleiter – Elementary semiconductors	586
8.32b	III-V-Verbindungen – III-V compounds	586
8.32c	II-VI-Verbindungen – II-VI compounds	587
8.32d	Sonstige Halbleiter – Other semiconductors	588
8.33	Fachglossar "Technische Acronyme" der Materialkunde (P. Thoma)	589

Verschiedene Eigenschaften von Festkörpern*) – Various properties of solids (W. Hemminger) 8.01

Dichte ρ , mittlerer linearer Ausdehnungskoeffizient α , spezifische Wärmekapazität c_{ρ} , Schmelzpunkt $t_{\rm f}$, molare Schmelzenthalpie $\Delta H_{\rm F,m}$, Siedepunkt $t_{\rm B}$ (bei 101325 Pa), molare Verdampfungsenthalpie $\Delta H_{\rm F,m}$, am normalen Siedenunkt

T 8.01

						and a state of the			
Stoff		Symbol	Ø	$10^6 \alpha$	c,	tr.	AHE	10 201	A.H
2010		oder	bei 20 °C	zwischen	bei 25 °C	1421	IFA	2202	H,VIID
A How we have		Formel	in	0 u. 100 °C	'n	in	in	in	in
The second second		1	g/cm ²	in K ⁻¹	Jg ⁻¹ K ⁻¹	D.	$kJ \cdot mol^{-1}$	°C O°	kJ · mol
Actinium	Survey (Sand	Ac	10,06	1 10%	0.24	1050	10.46	3200	and a second
Aluminium		AI	2,702	23,8	6.0	660.3	10.71	7447	1 204 1
Antimon	Port of	Sb	6,69	10,9	0.21	630.6	20.33	1637	1,702
Barium		Ba	3,51	18	0.19	710	766	1637	150.0
Beryllium		Be	1,85	12.3	1.82	1783	17 53	LLVC	6'001
Bismut		Bi	9.80	13.5	010	V 120	C1 11	1147	467
Blei	10	Pb	11.34	29.4	0,12	277.4	61,11 77 A	0901	151,5
Bor	3	В	234	0.2	1.00	15170	11.4	10/1	C'6/1
- Constanting	N-1-10		(amonth)	C'0	c0,1	2030	(0,01)	3900	~ 314
Cadminm	W. IC.	Cd	(1101011) 8 65			1 Martin	1 20 60	11210	N. Contraction
Cascium	A should	3 3	0,00	4,42	0,23	321,1	6,29	765	6'66
Cacsium	the second	S C	1,873	- 26	0,24	28,64	2,18	685	62.9
Calcium		Ca	1,55	25,21)	0,65	850	18.66	1487	150.9
Cer		Ce	6,77	-	0,21	797	12.80	3426	313.8
Chrom		Cr	6,93	6,6	0,45	1860	14.56	2642	248.4
Cobalt	1.2	Co	8,9	12,6	0.42	1495	153	2880	2000
Eisen		Fe	7,87	12	0.45	1538	15.47	02750	0,200
Gallium		Ga	5,91	18	0.47	92.00	5 57	20017	1,400
Germanium	in Gul	Ge	5,33	9	0 37	037.7	92.06	1777	8,002
Gold	ON TO P	Au	19,29	14.3	0.17	1064	D1'67	LOTC	0,225
Hafnium	Contraction of the second	Hf	13.36	66	0.14	UCCC	11.21	1017	0,628
Indium		In	7.36	30	0.72	0777	0,12	(4002)	661,3
Iridium	No. 1 - North	lr	CP CC	29	0.10	0'001	2,28	204/	226,2
Ind			70.7	C*0	0,13	2446	27,63	4350	749,7
Valium		2	4,73	83	0,43	113,6	15,77	182,8	41.7
Naliulii		X	0,86	84 ²)	0,75	63,25	2.33	753.8	77.4
Kohlenstott	(amorph)	C	1,8 bis			subl.	in the second		
		a of the second	2,1	- but KN	- 'SETAN	3650	The Party of the	000	- 87 - 6001
Graphit		Found	2,25	7,9	0,71	subl.		10 m	
i		Higher Oct	Del Do Su	in nodojiten	PAR DE C.	3650	The second second	374	
Diamant	The state of the s	CHANNE IN	3,51	1,3	0.5	>3550	1 - Dama mar		

toffer

6.4	Ctoff	Cumbol	~	1.06.			A IT		A IT
dr.	Stoll	oder	e bei 20 °C	10°α zwischen	c _p bei 25 °C	IF	$\Delta H_{\mathrm{F,m}}$	IB	$\Delta H_{V,m}$
	Cuthte	Formel	in g/cm ³	0 u. 100 °C in K ⁻¹	$\inf_{Jg^{-1}K^{-1}}$	°C °C	in kJ · mol ⁻¹	°C II.	in kJ · mol ⁻
25	Kupfer	Cu	8,96	16,8	0.386	1085	13,03	2595	304,4
26	Lanthan	La	6,16	4,9 ³)	0.200	920	6,7	3457	393
27	Lithium	Li	0,534	56	3,406	180.5	3,01	1330	148,1
28	Lutetium	Lu	9,84		0,119	1663	19	3395	1 1012
29	Magnesium	Mg	1,74	26,0	1,025	649.5	8,95	1120	131,8
30	Mangan	Mn	7,43	23	0,479	1244	14,61	2095	224,8
31	Molybdän	Mo	10,22	5,1	0,247	2623	27,82	~ 4800	594
32	Natrium	Na	76,0	71	1,226	61.79	2,60	883	89,30
33	Neodym	PN	7,01	6,74)	0,188	1020	10,67	3100	296
34	Nickel	Ni	8,91	13	0.444	1455	17.79	2800	380.3
35	Niob	Nb	8,55	7.3	0.268	2473	26.76	~ 4900	696.8
36	Osmium	Os	22,48	6.6	0.131	3045	27.96	~ 4400	~ 630
37	Palladium	Pd	12,02	11.9	0.244	1555	17.24	3560	372.6
38	Phosphor, weiß	Р	1,82	124	797	44.2	2,51+)	281	12,35
	schwarz	PL	2,69		11. 10.00		- 0.0	100	4.4.K
39	Platin	Pt	21,45	9,1	0,132	1768	21,66	4300	446,8
40	Polonium	Po	9,4		0,126	254	(10,05)	962	(103)
41	Radium	Ra	5,0		0,121	700	(8,30)	(1530)	136,9
42	Rhenium	Re	21,04	6,6	0,137	3180	33,11	~ 5600	707
43	Rhodium	Rh	12,5	8,5	0.248	1962	22,43	3960	531
44	Rubidium	Rb	1,53	60	0,361	39,27	2,20	101	75,22
45	Ruthenium	Ru	12,3	9.6	0,236	2333	~ 26	4110	~ 568
46	Scandium	Sc	2,99	23,8	0,490	1538	16,74	2830	~ 330
47	Schwefel, monokl. (β)	S ₈	1,96		0.737	119.0	1,718	444.6	90.57
	rhomb. (α)	S ₈	2,07		0,705	112,8			
48	Selen (grau)	Se	4,79	37	0,321	217,4	5,42	684,9	95,48
49	Silber	Ag	10,5	19,7	0.235	961.8	11.27	2180	253.5
50	Silicium	Si	2,33	7,6	0,705	1423	46,47	2355	394,6
51	Strontium	Sr	2,67	10,4	0.287	770	9.20	1367	139.3
52	Tantal	Ta	16,6	6,5	0,141	2996	31,49	~ 5400	752,7
53	Tellur (amorph)	Te	6,00	17,2	0,201	449.5	17,49	989.8	114,1
54	Thallium	IL	11.85	29.4	0.129	303.5	4.21	1457	1625

530

Struktur und Eigenschaften der Materie

ZL	ING I 8.UI								
11108 10100	Stoff	Symbol oder Formel	e bei 20°C in g/cm³	$\begin{array}{c} 10^{6} \alpha \\ zwischen \\ 0 u. 100 °C \\ in K^{-1} \end{array}$	c_p bei 25°C in Jg ⁻¹ K ⁻¹	tF in °C	Δ <i>H</i> _{F.m} in kJ · mol ⁻¹	l ^B in ∘C	ΔH _{V.m} in k1.mol-1
	Thorium	Th	11.7	10.5	0.118	1605	15 64		1011 - 64
131	Titan	н:	4,51	8,35	0,523	6991	15.52	3287	543,0 430.0
	Uran	0	19,1	15,3	0,116	1132	19,71	3930	411.8
14	Wolfram	M	6,12	8,3	0,483	1890	17,5	~ 3380	458
1.25	Yttrium		12,41	C,4	0,135	3418	35,30	~ 5500	799,8
80	Zink	Zn	7.13	26.3	0 389 867*0	1523	17,16	3338	393,0
	Zinn (grau)	Sn	a5,75		0,217	231,9	L1 L	106	700.0
	Zirconium	Zr	B1,28	27	0,227	231,9	1141	/ 007	\$10,8
0.1	Benzoesäure	C ₆ H ₅ COOH	1.266	0't	0/7'0	1834	19,98	~ 4380	582,0
1	Benzophenon	C ₆ H ₅ COC ₆ H ₅	1,108		1,404	48.1	1/,11	249,1	
	Biphenyl	C ₁₂ H ₁₀	1,16	121	591	70.5	18.60	6,cuc 9,550	47.0
-	Kaliumchlorid	KCI	1,984	33	0.690	772	25.50	1413	161 5
1.5	Kaliumnitrat	KNO3	2,109	78	0,953	337	10.82	~ 400	C'101
	Naphthalin	Cl0H8	1,168	94	1,295	80,5	18,97	218.8	40.25
1	Natriumnitrat	NaUL	2,163	40	0,869	800	29,22	1460	169.5
	Matrimmulfa	No EO	1 (7,7	「白い」、「「日日日	1,095	306	15,30	380	
-	Di autimitisuitat	N42504	2,698		0,921	884	26,99		
0.8	Prenol	C ₆ H ₅ OH	1,058	290	1,434	40,8	11,48	181.7	47.99
KIG	(Saccharose)	U12H22U11	96,1	83	1,242	186	19,17		
1CK	Stearinsäure	CH ₃ (CH ₂) ₁₆ COOH	0,94	70	1,66	71.2	56.9	374	66.0

T 8.01

rulatur und Eigenschaften der Materi

8.02 Verschiedene Eigenschaften von Flüssigkeiten^{*)} – Various properties of liquids (W. Hemminger)

Dichte ϱ , Volumenausdehnungskoeffizient α_V , Oberflächenspannung σ , spezifische Wärmekapazität c_p , Schmelzpunkt t_F , molare Schmelzenthalpie $\Delta H_{\rm Em}$, Siedepunkt $t_{\rm B}$ bei 101325 Pa, seine Erhöhung d $T_{\rm B}/dp$ durch

Lfd. Nr.	Flüssigkeit	Formel ⁺	Q bei 20 ℃ in kg/m ³	$10^3 \alpha_V$ bei 20 °C in K ⁻¹	$\sigma \\ bei \\ 20 ^{\circ}C \\ in \\ mN \cdot m^{-1}$
1 2 3 4 5 6 7 8 9 10 11 12	Acetaldehyd (Ethanal) Aceton (2-Propanon) Ameisensäure Amylalkohol, Iso-(3-Methyl-1-Butanol) Amylalkohol, Iso-(3-Methyl-1-Butanol) Anilin Benzol Brom Bromoform Butylalkohol, Iso-(2-Methyl-1-Propanol) Butylalkohol, Iso-(2-Methyl-1-Propanol) Butylalkohol, Iso-(2-Methyl-1-Propanol) Butylalkohol, Iso-(2-Methyl-1-Propanol) Butylalkohol, Iso-(2-Methyl-1-Propanol)	$\begin{array}{c} CH_{3}CHO\\ CH_{3}COCH_{3}\\ HCOOH\\ (CH_{3})_{2}CH(CH_{2})_{2}OH\\ CH_{3}(CH_{2})_{4}OH\\ C_{6}H_{5}NH_{2}\\ C_{6}H_{6}\\ Br_{2}\\ CHBr_{3}\\ (CH_{3})_{2}CHCH_{2}OH\\ CH_{3}(CH_{2})_{3}OH\\ C_{6}H_{4}CH=CHCH=N \end{array}$	782,0 791,0 1220,0 809,0 815,0 1022,0 878,0 3120,0 2890,0 802,0 802,0 809,4 1090,0	1,49 1,02 0,93 0,90 0,84 1,73 1,13 0,91 0,94	21,2 23,3 37,6 24,3 25,6 43,3 28,9 41,5 41,6 23,0 24,6 45,6
13 14 15 16 17	Chlorbenzol Chloroform (Trichlormethan) Chlortoluol, m- Cyanwasserstoff Cyclohexan	C ₆ H ₅ Cl CHCl ₃ CH ₃ C ₆ H ₄ Cl HCN ÇH ₂ (CH ₂)₄ÇH ₂	1106,4 1489,0 1072,0 688,0 778,4	0,98 1,28 1,93 1,20	33,5 27,3 33,4 17,9 25,0
18 19 20 21	Decalin, cis- (cis-Decahydronaphthalin) Decalin, trans- (trans-Decahydronaphthalin) Diethylether Dioxan, 1,4-	$\begin{array}{c} C_{10}H_{18} \\ C_{10}H_{18} \\ C_{2}H_{5}OC_{2}H_{5} \\ QCH_{2}CH_{2}OCH_{2}CH_{2}CH_{2} \end{array}$	897,0 870,0 714,0 1034,0	0,86 1,62 1,094	17,1 33,7
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	Essigsäure Ethylacetat (Essigsäureethylester) Ethylakohol (Ethanol) Ethylbenzoat (Benzoesäureethylester) Glycerin (1,2,3-Propantriol) Heptan, n- Hexan, n- Methylakohol (Methanol) Methylacetat (Essigsäuremethylester) Methylacetat (Essigsäuremethylester) Pentan, Iso- (2-Methyl-Butan) Pentan, Iso- (2-Methyl-Butan) Pentan, Iso- (2-Propanol) Propylalkohol, Iso- (2-Propanol) Propylalkohol, Iso- (2-Propanol) Propylalkohol, Iso- (2-Propanol) Propylalkohol, Iso- (2-Propanol) Propylalkohol, Iso- (3-Propanol) Propylalkohol,	$\begin{array}{c} CH_{3}COOH\\ CH_{3}COOC_{2}H_{5}\\ CH_{3}CH_{2}OH\\ C_{6}H_{5}COOC_{2}H_{5}\\ CH_{2}CHCH_{2}(OH)_{3}\\ CH_{3}(CH_{2})_{5}CH_{3}\\ CH_{3}(CH_{2})_{4}CH_{3}\\ CH_{3}(CH_{2})_{4}CH_{3}\\ CH_{3}OH\\ CH_{3}COOCH_{3}\\ CH_{2}Cl_{2}\\ C_{6}H_{5}NO_{2}\\ CH_{3}(CH_{2})_{6}CH_{3}\\ CH_{2}CH_{2}CH_{3}(CH_{3})_{2}\\ CH_{3}(CH_{2})_{5}CH_{3}\\ (CH_{3})_{2}CHOH\\ CH_{3}(CH_{2})_{2}CH_{3}\\ (CH_{3})_{2}CHOH\\ CH_{3}(CH_{2})_{2}OH\\ C_{5}H_{5}N\\ Hg\\ CS_{2}\\ N_{2}O4\\ CCl_{4}\\ C_{6}H_{4}(CH_{2})_{3}CH_{2}\\ \end{array}$	$\begin{array}{c} 1049,0\\ 925,0\\ 789,2\\ 1047,0\\ 1261,0\\ 686,8\\ 659,5\\ 791,5\\ 934,0\\ 1325,5\\ 1203,1\\ 702,7\\ 619,7\\ 625,9\\ 785,1\\ 803,5\\ 983,0\\ 13545,9\\ 1263,0\\ 13545,9\\ 1263,0\\ 1447,0\\ 1593,7\\ 970,0\\ \end{array}$	$1,07 \\ 1,38 \\ 1,10 \\ 0,88 \\ 0,47 \\ 1,244 \\ 1,35 \\ 1,20 \\ 1,37 \\ 0,83 \\ 1,14 \\ 1,54 \\ 1,61 \\ 1,06 \\ 0,99 \\ 1,122 \\ 0,1819 \\ 1,18 \\ 1,23 \\ 0,78 \\ 0,78 \\ 0,9$	$\begin{array}{c} 27.4\\ 23.9\\ 22.3\\ 35.3\\ 63.4\\ 20.3\\ 18.4\\ 22.6\\ 24.5\\ 26.5\\ 43.3\\ 21.8\\ 13.7\\ 16.0\\ 21.4\\ 23.7\\ 37.2\\ 465\\ 32.2\\ 27.5\\ 26.8\\ 35.4\\ \end{array}$
44 45 46 47 48 49 50 51	Toluol Trichlormonofluormethan R 11 Trichlortrifluorethan R 113 Wasser, normales Wasser, schweres Xylol, o- Xylol, m- Xylol, p-	$\begin{array}{c} C_{6}H_{5}CH_{3}\\ CCl_{3}F\\ C_{2}Cl_{3}F_{3}\\ H_{2}O\\ D_{2}O\\ C_{6}H_{4}(CH_{3})_{2}\\ C_{6}H_{4}(CH_{3})_{2}\\ C_{6}H_{4}(CH_{3})_{2}\\ \end{array}$	866,9 1488,0 1576,0 998,2 1105,3 877,7 864,2 861,0	1,11 0,207 0,97 0,99	28,5 18 19 72,75 30,1 28,6 28,4

*) Die hier aufgeführten Stoffwerte hängen beträchtlich von der Reinheit der Stoffe ab.

⁺) Vereinfachte Strukturformel

Lfd.	Cp	t _F	$\Delta H_{\rm F,m}$	tB	$dT_{\rm B}/dp$	$\Delta H_{\rm V,m}$	kritische	e Größen		<i>ɛ</i> r
Nr.	$\begin{array}{c} \text{bei} \\ 25 ^{\circ}\text{C} \\ \text{in} \\ \text{Jg}^{-1} \text{K}^{-1} \end{array}$	in °C	in kJ · mol ^{−1}	in °C	in K · (kPa) ^{−1}	$\substack{t_k\\ ext{in}\\ ext{kJ} \cdot ext{mol}^{-1}}$	p _k in °C	Qk in M Pa	in g/cm ³	bei 200 °C
1 2 3 4	1,26 2,15 2,15 2,24	-123, 5 -94, 9 8, 4 -117, 2 78, 0	3,23 5,69 12,70	20,2 56,3 100,6 120 138 1	0,263 0,289 0,301 0,256 0,278	25,73 30,43 19,88 44,34	187,8 235,5 309,8	5,54 4,72	0,273	14,8 21,4 58 ¹) 15,6 15,0
56789	2,57 2,05 1,74 0,47 0,53	-6, 1 -5, 53 -7, 2 8, 3	10,52 9,99 10,84 11,63	184,4 80,08 58,8 149,5	0,383 0,320 0,278 0,367	45,1 30,78 29,25	425,6 288,9 311	5,30 4,9 10,34	0,340 0,308 1,184	6,89 2,284 3,09 4,39
10 11 12	2,43 2,42 1,53	-114, 7 -89, 8 -19, 5	9,27 10,81	108,0 117,5 237,7	0,270 0,279 0,427	45,66 46,32	277 289,8 508,8	4,30 4,4	(herber	18,1 17,8 8,7
13 14 15	1,33 0,97 1,32	$ \begin{array}{r} -45,2\\ -63,5\\ -47,8 \end{array} $	9,88 8,95	131,8 61,3 162	0,367 0,296 0,390	36,81 33,31	359,2 263,4	4,52 5,47	0,365 0,497	5,708 4,806 5,55
16 17	2,63 1,85	-13, 24 6, 55	8,41	25,69 80,72	0,191 0,326	25,27	280,4	4,05	0,193	2,023
18 19 20 21	1,68 1,65 2,31 1,74	$ \begin{array}{c} -43, 3 \\ -31, 5 \\ -116, 3 \\ 11, 78 \end{array} $	14,38 7,19 12,60	194,6 185,5 34,4 101,5	0,428 0,424 0,279 0,323	41,06 26,54 31,71	418 408 193,6 311,9	2,91 2,91 3,63 5,20	0,265 0,360	2,22 2,18 4,335 2,27
22 23 24 25	2,06 1,93 2,42 1,63	$ \begin{array}{r} 16, 63 \\ -83, 6 \\ -114, 5 \\ -34, 7 \end{array} $	11,53 10,48 4,97 40,55	118,1 77,13 78,31 212,5 200,5	0,316 0,291 0,250 0,401 0,473	24,38 32,24 37,47 133,95	321,4 250,1 243 (452)	5,79 3,83 6,38	0,351 0,308 0,276	$\begin{array}{c} 6,15\\ 6,02^2)\\ 25,1\\ 6,02\\ 41,1\end{array}$
26 27 28 29 30	2,39 2,24 2,26 2,55 2,14	$ \begin{array}{r} 18, 4 \\ -90, 6 \\ -95, 3 \\ -93, 9 \\ -98, 7 \\ 06, 8 \end{array} $	18,51 14,13 13,10 2,95 4 20	98,4 68,7 64,5 57,8 40,7	0,336 0,315 0,261 0,278 0,270	31,86 28,61 35,24 30,07 27,94	167,1 234,4 240,0 233,7 237	2,74 3,03 7,95 4,69 6,08	0,236 0,234 0,272 0,325	1,92 1,890 33,62 6,68 ²) 9,08
32 33 34 35 36 37 38	1,18 1,52 2,23 2,27 2,37 2,55 2,48 1,68	-96, 8 5, 7 -56, 8 -159, 9 -129, 7 -89, 5 -126, 2 -41, 6	11,59 20,68 5,15 8,37 5,38 5,20 8,31	210,9 125,7 27,84 36,06 82,2 97,2 115,4	0,416 0,355 0,289 0,293 0,247 0,261 0,339	48,88 34,16 24,60 25,97 40,02 41,80 35,60	296 187,8 196,6 235,6 263,6 346,8	2,49 3,33 3,37 4,76 5,09 6,08	0,233 0,234 0,232 0,274 0,273	35,74 1,948 1,84 1,844 18,3 ²) 20,1 ²) 13,2
39 40 41 42 43	0,14 0,99 0,86 0,86 1,67	$ \begin{array}{r} -38,83 \\ -111,6 \\ -9,3 \\ -23,0 \\ -35 \end{array} $	2,37 4,40 14,72 3,28	356,62 46,3 21,6 76,7 207,2	0,562 0,313 0,330 0,417	57,17 26,80 38,08 29,99 43,89	278,9 158 283,2	7,90 10,10 4,56	0,440 0,56 0,558	2,641 2,4 2,238 2,7
44 45 46 47 48 49 50	1,76 0,89 0,93 4,17 4,21 1,78 1,73	$\begin{array}{r} -95, 0 \\ -110, 5 \\ -36, 4 \\ 0, 00 \\ 3, 80 \\ -25, 21 \\ -47, 88 \end{array}$	6,01 6,36 13,80 11,57	110,6 23,82 47,56 99,97 101,39 144,38 139,1 138,32	0,349 0,285 0,373 0,368 0 369	33,54 25,00 27,53 40,64 41,49 36,84 36,42 36,10	320,8 198,0 214,2 374,2 371,5 358,4 346 345	4,22 4,38 3,41 22,12 21,72 3,77 3,55 3,51	0,290 0,554 0,576 0,328 0,366 0,289 0,282 0,281	2,379 ²) 2,28 ³) 2,41 ²) 80,37 80,1 2,568 2,374 2,023

Druckänderung um 1 kPa, molare Verdampfungswärme $\Delta H_{V,m}$ am normalen Siedepunkt, kritische Größen t_k , p_k und ϱ_k , Dielektrizitätszahl ε_r .

¹) bei 16 °C, ²) bei 25 °C, ³) bei 29

8.03 Verschiedene Eigenschaften von Gasen – Various properties of gases (W. Blanke)

Temperaturangaben in der ITS-90 (Internationale Temperaturskala von 1990, s. 3.1.2. in Band 1). $M_{\rm B}$ stoffmengenbezogene Masse, $t_{\rm Tr}$ Tripelpunktstemperatur, $t_{\rm F}$ Schmelztemperatur am Schmelzpunkt bei 101,325 kPa (durch * gekennzeichnet), $p_{\rm Tr}$ Tripelpunktsdruck, $\Delta h_{\rm F}$ massenbezogene Schmelzenthalpie bei $t_{\rm Tr}$ oder $t_{\rm F}$, $t_{\rm B}$ Siedetemperatur oder (durch * gekennzeichnet) Sublimationstemperatur, ϱ' Dichte der flüssigen Phase, Δh massenbezogene Verdampfungsenthalpie bei 101,325 kPa (normaler Siedepunkt), t_k kritische Temperatur, p_k kritische Duck, ϱ_k kritische Dichte, ϱ_n Dichte des Gases bei 101,325 kPa und 0°C (Normdichte). p (20 °C) Dampfdruck bei 20 °C,

Lfd. Nr.	Gas		in du	Tripel- ode	r Schmelzp	ounkt	normaler Sublimati	Siede- od onspunkt	ler
	Name	Formel oder Symbol	MB	t _{Tr} oder	<i>p</i> _{Tr}	$\Delta h_{\rm F}$	t _B	Q'	Δh
100	(188 meisenslute 18 2 Ameistinden, ho- 19 2 Ameistinden, o	3-Mg006-1-Bukano Penintrol	in kg/kmol	ℓ _F in °C	in kPa	in kJ/kg	in °C	in kg/dm ³	in kJ/kg
1	Acetylen (Ethin)	CH = CH	26,038	-80,8	128,2	96,5	-84,02*		802*
2	Ammoniak	NH ₃	17,031	-77,73	6,08	332	-33,33	0,6816	1370
3	Argon	Ar	39,948	-189,3442	68,891	29,3	-185,848	1,3928	163
4	Arsenwasserstoff (Arsenhydrid)	AsH ₃	77,945	-116,9	2,98	15,4	-62,47	1,634	214
5	Bortrichlorid	BCl ₃	117,169	-107,5	<0,1	18,0	12,5	1,34	203
6	Bortrifluorid	BF3	67,806	-128,7	7,0	62,5	-100,3	1,589	279
7	Bromwasserstoff (Hydrogenbromid)	HBr	80,912	-86,85	29,9	37,5	-66,7	2,203	218
8	Butadien, 1,3-	CH ₂ =CHCH=CH ₂	54,092	-108,91	0,07	147,7	-4,5	0,650	418
9	Butan, n-	CH ₃ (CH ₂) ₂ CH ₃	58,123	-138,28	0,0005	80,2	-0,54	0,601	386
10	Butylen (1-Buten)	CH ₃ CH ₂ CH=CH ₂	56,108	-185,34*	1 101	68,6	-6,25	0,626	390
11	cis-Butylen-2	$CH_3CH = CHCH_3$	56,108	-138,90	0,0001	130,3	3,72	0,641	416
12	trans-Butylen-2	CH ₃ CH=CHCH ₃	56,108	-105,5	0,054	174,0	0,88	0,626	406
13	Chlor	Cl ₂	70,905	-101,0	1,39	90,3	-34,1	1,563	288
14	Chlorcyan	CNCI	61,470	-6,9*		185	12,9	1,247	445
15	Chlorkohlenstoff monooxid (Phosgen)	COCl ₂	98,916	-127,77		58,0	7,5	1,41	246
16	Chlortritluorid	CIF ₃	92,448	-76,31	0,97	82,4	11,75	1,850	298
17	Chlorwasserstoff (Hydrogenchlorid)	HCI	36,461	-114,18	14,0	54,7	-85,02	1,191	443
18	Cyanwasserstoff	HCN	27,026	-13,3	18,7	311	25,70	0,668	934
19	Cyclopropan	CH2CH2CH2	42,081	-127,61*		129,4	-32,86	0,680	477
20	Deuterium	D ₂	4,028	-254,441	17,1	48,8	-249,50	0,1624	304
21	(Borwasserstoff)	B ₂ H ₆	27,670	-164,84	0,06	161,6	-92,5	0,421	516
22	Dichlordifluor- methan R12	CF ₂ Cl ₂	120,913	-157,048	0,010	34,3	-29,749	1,484	163
23	Dichlortrifluor- ethan R123	CHCl ₂ =CF ₃	152,931	-107*	37 35		27,82	1,457	170,2
24	Dichlormonofluor- methan R21	CHFCl ₂	102,923	-135*	101		8,73	1,407	233
25	Dichlorsilan	SiH ₂ Cl ₂	101,007	-122,0*	1002	- 276	8,4	1,261	249
26	Dichlortetrafluor- ethan R114	CF ₂ ClCF ₂ C1	170,921	-92,55		1.80	3,92	1,526	132
27	Dicyan	(CN) ₂	52,035	-27,82	73,8	155,9	-21,2	0,953	449
28	Difluorethan,1,1- R152a	CH ₃ CHF ₂	66,051	-118,590	0,065	20	-24,016	1,011	330
29	Difluorethylen,1,1- R1132a	$CH_2 = CF_2$	64,035	-144*			-84	1,122	248
30	Dimethylamin	(CH ₃) ₂ NH	45,084	-92,2	≈0,1	132	7,0	0,671	588
31	Dimethylether	CH ₃ OCH ₃	46,069	-141,5*		111,4	-24,81	0,735	467
32	Dimethylsilan	(CH ₃) ₂ SiH ₂	60,171	-150,2*	in multiple	TOUT	-19,6	5.2	354

Lfd. Nr.	kritische	r Punkt		en	ears.on	08,09,79	210,44,910		ON 123	Er	222
	t _k in °C	<i>р</i> к in MPa	Q _k in kg/dm ³	Qn in kg/m ³	p(20 °C) in MPa	ρ'(20 °C) in kg/dm ³	c _p oder c ⁰ _p in kJ/(kgK)	<i>c_p/c_v</i>	$\begin{array}{l} \lambda \\ in \\ mW/(K \cdot m) \end{array}$	$(\varepsilon_r - 1) \cdot 10^6$	bei <i>t</i> in °C
1	35,17	6,191	0,231	1,1747	4,4	0,40	1,70	1,235	21,1	1220	25
2 3 4	132,4 -122,28 99,9	11,30 4,8979 6,6	0,235 0,5357	0,7715 1,7839	0,857 	0,610 	2,170 0,521 0,494	1,315 1,676	24,2 17,7 11,7	6590 517	16 20
5 6 7	178,8 -12,2 89,9	3,87 4,965 8,53	0,790 0,591 0,807	5,252 3,065 3,6443	1,60 2,09	1,38 	0,55 0,745* 0,360	1,42	8,4 18,9 9,4	2780	21
8 9 10 11	152 151,99 146,4 162,4	4,32 3,796 3,926 4,21 4,10	0,245 0,225 0,233 0,239 0,238	2,4787 2,705 2,582 2,582 2,582	0,240 0,2081 0,255 0,18 0,20	0,621 0,579 0,596 0,623 0,605	1,47 1,731 1,59* 1,41* 1,56*	1,105	15,8 17,1 16 15,2 15,1	2540 2870	25 25
12 13 14 15	135,5 144 215 182,0	4,10 7,70 5,67	0,238 0,573 0,52	3,214 4,496	0,673 0,133 0,157	1,409 1,186 1,372	0,473 0,724* 0,582*	1,35	8,8 13,8 9,5	nonocen Konfilon Lafet englien	2.83
16 17	153,7 51,53	5,8 8,31	0,548 0,42	3,57 1,6422	0,15 4,26	1,825 0,836	0,695* 0,82	1,39	14 16,9	3790	21
18 19	183,5 125,12	5,39 5,579	0,195 0,2585	1,2245 1,88	0,08 0,64	0,686 0,610	1,33* 1,33*		12	N Selling Department 1894 R Neeling Department	212
20 21	-234,8 16,6	1,665 4,053	0,0668 0,16	0,1796 1,259	66.0 	-	7,25 2,04*	1,40	138 21,3	251	20
22	111,8	4,180	0,5574	5,562	0,559	1,331	0,613	1,143	10,0	3550	0
23	183,68	3,666	0,550	-	0,076	1,477	0,671*		8.40 .6.8	methan R128	-
24	178,5	5,17	0,522	-	0,153	1,381	0,618	1,18	9,0	methile 10131	88
25 26	176,3 145,7	4,378 3,248	0,479 0,582	-	0,16 0,179	1,236 1,479	0,611* 0,735	1,089	10,9	ethan R182b Monochiedd	59
27 28	126,6 113,26	5,94 4,520	0,368	2,3492 3,034	0,48 0,5146	0,877 0,912	1,09* 1,046	1,154	15,5 14,2	Manachilarae Ituaestab R	08
29	29,69	4,463	0,414		3,611	0,670	0,942*		15	Roorethan R	
30 31 32	164,6 126,9	5,31 5,37	0,256 0,2714	2,1097 2.73	0,169 0,510 0,38	0,655 0,666 0,584	1,53 1,39	1,15 1,11	16 16,3	6020	25

 ϱ' (20 °C) Dichte der flüssigen Phase bei 20 °C, c_p spezifische Wärmekapazität bei konstantem Druck bei 101,325 kPa und 25 °C, c_p^0 spezifische Wärmekapazität bei konstantem Druck für das ideale Gas bei $p \rightarrow 0$ und 25 °C (durch * gekennzeichnet), c_p/c_v Verhältnis der spezifischen Wärmekapazitäten im gasförmigen Zustand bei 101,325 kPa und 25 °C, λ Wärmeleitfähigkeit bei 101,325 kPa und 25 °C, ε_r Dielektrizitätszahl bei 101,325 kPa und *t*

Lfd. Nr.	Gas	TTS-90 (Intern Tipelminitations	tionale" T main, ir	Tripel- ode	r Schmelz	punkt	normaler S Sublimatio	iede- oder	stofficen-
	Name	Formel oder Symbol	M _B	t _{Tr} oder	<i>P</i> Tr	$\Delta h_{\rm F}$	t _B	Q'	Δh
central	in Dicine. Aprosti	e Sfart Q Lands Hall	in kg/kmol	t _F in ℃	in kPa	in kJ/kg	in °C	in kg/dm ³	in kJ/kg
33	Distickstoff monooxid (Stickoxydul)	N ₂ O	44,013	-90,80	87,85	149	-88,46	1,223	376
34	Ethan	CH ₃ CH ₃	30,070	-182,79	0,001	95,0	-88,67	0,54649	489
35	Ethylamin	C ₂ H ₅ NH ₂	45,084	-81,0	0,15	ph	16,6	0,6874	603
36	Ethylchlorid R160	CH ₃ CH ₂ Cl	64,514	-138,3*	5263	69,0	12,28	0,906	382
37	Ethylen (Ethen)	CH ₂ =CH ₂	28,054	-169,17	0,12	119,5	-103,71	0,5679	483
38	Ethylenoxid	CH2 CH2	44,053	-112,54*	4,424	117,5	10,45	0,887	580
20	Fluor	E O	37 007	210.67	0.25	12.4	100 2	1 502	175
40	Fluorwasserstoff (Hydrogenfluorid)	HF	20,006	-83,36	0,23	196	19,51	0,969	375
	Arenhedrad			unterer λ -P	unkt			1111	
41	Helium 4	⁴ He	4,003	-270,9732	5,042	5252	-268,9279	0,1250	20,6
42	Hexafluorpropylen	CF ₃ CF=CF ₂	150,023	-156,5*		Sec. 1	-29,6	0 11 8 90	- hour
43	Isobutan (2-Methylpropan)	(CH ₃) ₃ CH	58,123	-159,41	0,005	78,2	-11,61	0,594	367
44	Isobutylen (2-Methylpropen)	(CH ₃) ₂ C=CH ₂	56,108	-140,34*	14 012.40 012.03	106	-7,12	0,6263	401
195		Child Char	1992.156	0.0002.011		2,612	6.615.0-16.9	fest	100101
45	Kohlenstoffdioxid		44,010	-56,561	518,5	196,6	-78,465*	1,562	573*
46	Kohlenstoff-	CO	28,010	-205,00	15,35	29,9	-191,51	0,789	216
47	Krypton	Kr	83,800	-157,374	73,2	19,5	-153,34	2,413	108
10	Luft (tracker	1909ym 11	20.05	Liquidus-P		14,496	104.49	0.0750	205
40	und CO ₂ -frei)	CU	16.042	192 459	0,2	507	-194,48	0,8758	205
49	Methan	CH NH	10,043	-182,458	11,/	38,/	-101,482	0,4225	510
50	Methylamin	CH Dr	04.020	-93,43	0.2	198	-0,35	0,094	831
51	PAOP 1	Спзы	94,939	-93,05	0,2	63,0	3,30	1,721	252
52	Methylchlorid R40	CH.CI	50 499	07.70	0.87	127.4	22.76	1.003	120
52	Methylfhorid P41	CHE	24 022	141.9	0.22	127,4	79.40	1,003	516
51	Methylmercantan	CH.SH	18 100	123 0*	0,55	122	5.06	0,077	511
55	Methylsilan	CH_Si	46,103	156.8		125	57.5	0,000	208
56	Monobrom-	CF ₂ ClBr	165 365	-150,8	12210 11		_33	1 805	135
50	monochlordifluor- methan R12B1	CI /CILI	105,505	-159,5	6,076		042,0024	1,075	155
57	Monobromtrifluor- methan R13B1	CF ₃ Br	148,910	-168,15	0.153		-58,70	1,990	112
58	Monochlordifluor- ethan R142b	CH ₃ CF ₂ Cl	100,496	-130,432	0,005	26,7	-9,103	1,193	220
59	Monochlordifluor- methan R22	CHF ₂ Cl	86,468	-157,385	0.179	47,6	-40,799	1,409	234
60	Monochlorpenta- fluorethan R115	CF ₂ ClCF3	154,467	-106,15	2,32	12,2	-38,98	1,558	123
61	Monochlortetra- fluorethan R124	CHClF=CF ₃	136,476	0000.044	1101		-11,950	1,473	166
62	Monochlortrifluor- ethan R133a	CH ₂ ClCF ₃	118,486	-105,5*	earlo-d.		6,93	E 85.678.	206
63	Monochlortrifluor- ethylen R1113	CFCI=CF2	116,470	-158,1*	01210	47,7	-28,35	1,46	178

Lfd. Nr.	kritischer	Punkt	inkt i n	(dimitizo	pol- oder	a Fill				ε _r	ini av
au Part	t _k in °C mbread	<i>p</i> k in MPa	ℓk in kg/dm ³	Qn in kg/m ³	p(20 °C) in MPa	ρ'(20 °C) in kg/dm ³	c_p oder c_p^0 in kJ/(kgK)	c_p/c_v	λ in mW/(K · m)	$(\varepsilon_r - 1)$ $\cdot 10^6$	bei <i>t</i> in °C
33	36,40	7,245	0,452	1,9778	5,08	0,785	0,880*	Diffe	17,3	1028	25
34 35 36 37 38	32,26 183,4 187,2 9,22 195,74	4,884 5,63 5,27 5,02 7,19	0,2056 0,2483 0,331 0,218 0,314	1,3566 - 1,2611 -	3,78 0,116 0,133 - 0,144	0,351 0,683 0,893 0,882	1,768 1,55 1,15 1,54 1,10*	1,19 1,13 1,19 1,25	21,2 16,9 10,9 20,1 12,4	1380 12900 1328 10600	25 25 25 25
39 40	-128,84 188	5,215 6,49	0,574 0,29	1,696	0,103	0,968	0,825 1,46*	10	27,8 25,8	750	31
41 42 43	-267,949 86,2 134 95	0,2275 3,0 3,65	0,06964 0,56 0,221	0,17847 2,689	0,64 0,302		5,20 0,490* 1,70	1,66 1,11	152 17,0	66 2560	25 25
44	144,7	4,000	0,234	2,587	0,259	0,594	1,59*	2.0	16,4	3170	25
45 46	31,05 -140,23	7,3825 3,499	0,4661 0,301	1,9769 1,2500	5,722	0,7742	0,852 1,04	1,294 1,40	18,1 24,9	922 634	20 25
47	-63,74	5,502	0,919	3,744	-	-	0,248	1,69	9,5	768	25
48	Punkt des -140,629	kritischer 3,766	Kontakts 0,313	1,2923		Ting	1,007	1,402	26,2	536	20
49 50 51	82,601 156,9 194	4,5950 7,41 5,23	0,16266 0,216 0,577	0,7174 1,396 -	 0,300 0,189	0,662 1,677	2,231 1,74 0,448*	1,307 1,20	34 16 8,0	704 5640 10000	25 25 25
52 53 54 55 56	143 44,54 196,8 79,3 153,69	6,67 5,87 7,24 4,37 4,254	0,353 0,300 0,332 0,236 0,6732	2,3075 1,5450 2,076 7,65	0,490 3,5 0,171 1,30 0,229	0,921 0,578 0,867 0,507 1,814	0,808* 1,10* 1,05* 0,45*	175-CI 1843C 1641	10,7 18 13,3 7,8	10400 9500	25 25
57	67.05	4.017	0.745	6,778	1,425	1,588	0,472	1,15	9,8	1,1-814	
58	137.07	4,246	0,435	4,667	0,2876	1,127	0,849	1,127	11,8	ichan R.	
59	96,13	4,989	0,520	3,935	0,910	1,210	0,661	1,18	11,4	evition in Real of the	
60	79,9	3,153	0,596	7,106	0,792	1,313	0,713	1,09	12,0	1801-11	
61	122,47	3,6384	0,560	6,318	0,3272	1,373	0,781	1,10	12,1	iourbi y na	1 3
62	150	8,091.5	a general	1000	0,182	1,330			E NormiBJ		2
63	105,8	4,06	0,55	5,34	0,562	1,31	0,722*	168. 2	10,3	2729	28

Fortsetzung T 8.03

Lfd. Gas Tripel- oder Schmelzpunkt normaler Siede- oder Nr. Sublimationspunkt Formel MB Name $\Delta h_{\rm F}$ Δh 1Tr **P**Tr tB o' oder Symbol oder in tF in in in in in in °C kPa kg/kmol kJ/kg °C kg/dm³ kJ/kg 64 Monochlortrifluor-CF₃Cl 104.459 -181.15 -81.23 1.524 146 methan R13 65 20.180 -248.5939 43.394 16.6 -246.053 1.207 91.3 Neon Ne ÇF2CF2CF2CF2 66 Octafluorcyclo-200.031 -40.2 19.0 13.8 -4.37 1.476 111 butan RC318 67 Octafluor-188.020 183* -37.16 1,525 101 C₃F₈ propan R218 68 Ozon 47.998 -192.5 0.0011 43.5 -111.3 1.352 316 03 69 Pentafluor-CHF₂=CF₃ 120,022 -103,15 -48,14 1,515 164 ethan R125 70 Phosphorwasser-H₃P 33.998 -133.79 3.64 33.3 -87.76 0,746 430 stoff (Phosphin) $3 \cdot 10^{-7}$ 71 Propan CH₃CH₂CH₃ 44.097 -187.7 80.0 -42.1 0.581 426 -185,2 72 Propylen (Propen) CH₃CH=CH₂ 42,081 $1 \cdot 10^{-6}$ 71.4 -47.68 0,6091 439 02 31.999 73 Sauerstoff -218.79160.147 13.9 -182.9541.1407 213 64,065 74 Schwefeldioxid SO2 -75,5 1,67 116 -10,021,460 390 SF₆ 75 Schwefelhexa-146,056 -49,596 231,82 40 -63,8* 162* fluorid 76 Schwefelwasserstoff H₂S 34,082 -85,7 22,7 69,8 -60.2 0,915 548 (Hydrogensulfid) 77 Selenwasserstoff H₂Se 80,98 -65.7 27.4 31.1 -41,4 2,004 243 (Hydrogenselenid) 78 Siliciumwasser-H₄Si 32,117 -186,4< 0,1 -111,4 0,556 363 24,6 stoff (Monosilan) 79 Stickstoff N_2 28.013 -209.999 12.526 25.7 -195,798 0.8086 199 80 Stickstoffmonooxid NO 30,006 -163,6 21,92 -151,74 1,269 76,6 461 81 Stickstofftetraoxid N2O4 92.011 -11.2018,64 159,5 21.10 1,443 414 82 Tetrafluor-CF3=CH2F 102,031 -103,2890,41 18,2 -26,0831,377 216,4 ethan R134a 83 Tetrafluorethylen $CF_2 = CF_2$ 100,016 -1311,2 77 -75,62 1,515 168 R1114 84 Tetrafluormethan CF₄ 88,005 -183,55 8.0 -127.881,611 130 R14 85 Trichlormono-CFCl₃ 137,368 -110,44650,2 23,82 1,484 177 fluormethan R11 86 Trifluorethan, CH₃CF₃ 84,041 -111,33 73.7 -47,28 1,162 228 1,1,1-R143a 87 70,014 58,0 -82,06 1.441 Trifluor-CHF₃ -155,1240 methan R23 88 Trimethylamin (CH3)3N 59.111 -117.1* 111 2.87 0.6534 388 89 Trimethylsilan 74,198 328 (CH₃)₃SiH -135,86,7 90 106,950 215 Vinylbromid CH₂=CHBr -138* 15,7 1,525 243 R1140B1 91 Vinvlchlorid R1140 $CH_2 = CHCI$ 62,499 -154* 75.9 -13.70,971 333 46,044 92 VinyItluorid R1141 $CH_2 = CHF$ -160.5 -72,20.907 372 93 Vinylmethylether $CH_3OCH = CH_2$ 58,080 -122* 0.765 6,0 94 Wasserstoff, Normal-2.016 259,198 7,193 58.2 -252.7620.07098 454 H₂ 95 Wasserstoff, Gleich- H_2 2,016 -259,3467 7.03 58,2 -252,87890,07078 446 gewichts-131.29 17.5 96 Xenon Xe -111,746 81.6 -108.083.057 99.2

Lfd. Nr.	kritische	r Punkt	inst-sit-to	ion a	iilii dirilee	nd with m	tres (ari)	N Solar	ecular ben ecular (K	ε _r	
in the second	t _k in °C	<i>p</i> _k in MPa	ℓ _k in kg/dm	$ \begin{array}{c} \varrho_n \\ in \\ kg/m^3 \end{array} $	p(20 °C) in MPa	ρ'(20 °C) in kg/dm ³	c _p oder c in kJ/(kgK)	c_p/c_v	λ in mW/(K · m)	$(\varepsilon_r - 1)$ $\cdot 10^6$	bei <i>t</i> in °C
64	28,86	3,870	0,581	4,724	3,24	0,849	0,645	1,149	12,5		
65 66	-228,756 115,22	2,654 2,775	0,4835 0,620	0,9002 9,48	0,244	1,394	1,030 0,802	1,67 1,069	48,9 11,7	123	25
67	71,95	2,68	0,268	8,694	0,761	1,281	0,798	1,07	13,1		
68 69	-12,1 66,18	5,53 3,631	0,537 0,572	2,142 5,496	1,204		0,820 0,807	1,102	14,2	1900	0
70	51,3	6,53	0,30	1,531	3,46	0,566	1,091*		17,9	2380	16
71 72	96,8 92,4	4,26 4,6646	0,226 0,2234	2,011 1,9149	0,836 1,021	0,500 0,513	1,706 1,55	1,135 1,157	18,9 17	1960 2250	25 25
73 74 75	-118,560 157,5 45,567	5,043 7,88 3,745	0,4361 0,525 0,7420	1,4290 2,9263 6,602	0,330 2,0977		0,917 0,65 0,665	1,396 1,27	26,4 9,5 13,8	494 (8200) 2050	20 (22) 25
76	100,02	8,937	0,346	1,5362	1,81	0,796	1,00	1,31	14,5	3310	28
77	138	8,92	0,760	3,6643	0,95	0,182	0,427*	101. siganal	10	- or	
78	-3,5	4,84	0,242	1,44	- 64		1,33*		21,9	- 6	
79 80 81 82	-146,94 -93,0 157,9 101.03	3,400 6,485 10,132 4,056	0,3140 0,520 0,550 0,517	1,2504 1,3402 4 684	- 0,097	- 1,441 1,225	1,041 0,996 0,858* 0,850	1,401 1,39	25,9 25,7	547 593	20 25
83	33.3	4.05	0.588	1,001	≈3.0	0.97	0.804*	1,000	16	14000	25
34	-45.65	3.795	0.626	3.947	abi des l	- 101	0,693	1,162	16.7		din A
35	198,05	4,467	0,554	_	0,088	1,493	0,597	1,143	8,4		1
36	73,10	3,811	0,434	3,833	1,113	0,951	0,951	1,127	14,5		and the second
37	25,95	4,900	0,526	3,156	4,19	0,836	0,736	1,201	14,6	26	non.
8	160,11	4,08	0,233	-	0,188	0,633	1,55*		15,1		
89 90	155 198	5,54		- 1	0,16 0,121	0,618 1,515	0,561*		240-5	8200	18
1 2	156,5 54,72	5,59 5,112	0,37 0,3220		0,34 2,393	0,911 0,638	0,858* 1,12*		8,0 14,1	Sec.	made
4 - 5 -	-239,92 -240,18	3,19 1,296 1,293	0,0301 0,0314	0,08989		-	14,3	1,41	182	252	25
6	16,58	5,840	1,110	5,8971	-	-	0,160	1,68	5,55	1240	25

8.04 Abschätzung typischer Intensitäten von Molekularstrahlquellen in Strahlrichtung als Funktion der Molekülenergie – Estimate of typical intensities of molecular beam sources within the beam direction as a function of the energy of molecules (K.-H. Schartner)

Nach Pauly, H. (1988 b): High-Energy Beam Sources. In: Atomic and Molecular Beam Methods, Vol. 1, 124–152, Scoles. G. (ed.), New York, Oxford: Oxford Univ. Press.

Aufgetragen ist für Masse 40 die Intensität in Strahlrichtung; für Effusionsquelle, Sputterquelle und Hohlkathodenentladung integriert über ein Geschwindigkeitsintervall $\Delta v/v = 7\%$ bei 40% Transmission des v-Selektors.

8.05 Die sieben Kristallsysteme (Spalten 1-3) und die vierzehn Bravais-Gitter (Spalten 4-7)– The seven crystal systems (column 1-3) and the fourteen Bravais lattices (column 4-7) (H. Bradaczek u. G. Hildebrandt)

1 Kristall- System	2 Achsen	3 Achsenwinkel	4 Zahl der Gitter im System	5 Gitter- Symbol	6 Gitter-Zentrierung	7 Gitterpunkte je Einh. Zelle
triklin monoklin	$a \neq b \neq c$ $a \neq b \neq c$	$\begin{array}{c} \alpha \neq \beta \neq \gamma \neq 90^{\circ} \\ \alpha = \gamma = 90^{\circ} \neq \beta \end{array}$	1 2	P P C	unzentriert unzentriert basiszentriert	8/8 8/8 8/8 + 2/2
rhombisch	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	4	P C I F	unzentriert basiszentriert innenzentriert flächenzentriert	
tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	2	P I	unzentriert innenzentriert	$\frac{8/8}{8/8+1}$
kubisch	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	3	P I F	unzentr. (sc) ⁺) innenzentr. (bcc) flächenzentr. (fcc)	
rhomboedrisch oder trigonal)	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$ und < 120°	1	R	unzentriert	8/8
hexagonal	$a = b \neq c$ oder $a_1 = a_2 = a_3 \neq c$	$\begin{array}{l} \alpha = \beta = 90^{\circ} \\ \gamma = 120^{\circ} \end{array}$	1	Р	unzentr. (hcp) ⁺)	8/8

⁺) sc = simple cubic; bcc = body-centred cubic; fcc = face-centred cubic; hcp = hexagonal close-packed.

8.06 Kristallstrukti portant elemen	ur der wichtigsten Eler ts and of simple chemicu	mente und einfacher o al compounds (H. Bra	chemische Idaczek u.	r Verbin G. Hildel	dungen – brandt)	Crystal str	ucture of the	most im-
Gittertyp	Gitterbau	Koordinaten der Atome	Gitterkonsta	anten in A :	$= 10^{-10} \text{ m} =$	10 ⁻¹ nm*)	2.0047 4.040	
Kubische Gitter mit der Gitter	rkonstanten a		CHI CHI	202	1		28.6. 23.5	
Innenzentriert kubisches Gitter (bcc)	Koordinationszahl 8 2 einfach kubische Gitter	$000, \frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$	Ba Cr Cs	5,024 2,884 6.05	α-Fe Mo Na	2,866 3,147 4,291	Nb Ta W	3,300 3,304 3.165
Flächenzentriert kubisches Gitter (fcc)	Koordinationszahl 12 4 einfach kubische Gitter	$000, 0 \frac{1}{2} \frac{1}{2} \frac{1}{2} $	Ag Al Au	4,086 4,049 4.078	β-Co ²) Cu Ni ³)	3,554 3,615 3,574	Pd Pd	4,950 3,882 3,918
Caesiumchloridtypus CsCl	Koordinationszahl 8 2 einfach kubische Gitter 2 Atome ie Zelle	$000, \frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$	AgCd ⁴) β-AINi ⁵) AuCd ⁶)	3,333 2,884 3,34	CsBr CsCl B-CuZn	4,123 4,123 3,615	TIBr	3,975 4,205
Zinkblendetypus ZnS und Diamanttyp	Koordinationszahl 4 2 flächenzentriert kubische Gitter	$000, 0 \frac{1}{2} \frac{1}{2}$);	C¢)	Ge ⁷) 3,563 AgJ ¹¹)	5,65754 β-SiC ⁹) 6,473	Si ⁷) 4,352 CuJ	5,43102032 α -Sn ¹⁰) 6,043	6,491
Actualistic Construction of the con- traction of the construction of the con- mark of the construction of the con- mark of the construction of the con- construction of the con- construction of the con- traction of the construction of the con- construction of the con- struction of the con- construction of the con- construction of the con- traction of the con- tract	8 Atome je Zelle	$\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{3}{4}$ $\frac{3}{4}$ $\frac{3}{4}$	AIP AIAS AISb CdS CdS	5,451 5,662 6,136 5,582	GaP GaAs GaAs GaSb HgS ¹²)	5,451 5,653 6,095 5,852 5,852	InP InAs InSb ZnS ZnS	5,8688 6,0584 6,4788 5,409
Steinsalztypus NaCl	2 flåchenzentriert kubische Gitter 8 Atome je Zelle	$\begin{array}{c} 000, 0 & \frac{1}{2} & \frac{1}{2}; \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2}, \frac{1}{2} & 0 \end{array}$	AgBr AgCl CaO CaO CaO CaO CaO CaO CaO CaO CaO CaO	5,775 5,549 5,533 4,695 4,695	KR KK K K K K K K K K K K K K K K K K K	6,599 6,599 5,347 7,064	MgO NaCl PbS PbS Proceeding	5,640 5,640 5,936 6,125
Flußspattypus CaF2	3 flächenzentriert kubische Gitter 12 Atome je Zelle	Ca: 000, $0 \frac{1}{2} \frac{1}{2}$); F: $\frac{1}{4} \frac{1}{4} \frac{1}{4}, \frac{1}{4} \frac{3}{4} \frac{3}{4}$	CaF2 CeO2 Cu2S ¹³)	5,463 5,411 5,57	Cu ₂ Se ¹³) ThO ₂ UO ₂	5,596 5,468 5,468	ZrO ₂	5,07
Schendulsball Schefformund Temperatures. 13:418.038 fm. 3:7 - 03:00.13.17 - 26.00	ange Vijstagetifikerstagetiongen Banam, T. = 22,510, 31 Dra Sjit nar najamagamenar, W	$F:\frac{3}{4}\frac{3}{4}\frac{3}{4},\frac{3}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\right)$						
Cuprittypus Cu ₂ O	6 Atome je Zelle; O-Atome bilden ein innenzentriertes, Cu-Atome ein flächen- zentriertes Gitter	O: 000, $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$; Cu: $\frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{3}{4} \frac{3}{4} \frac{3}{4}$	tethology was	Ag ₂ O	4,72	Cu ₂ O ¹⁴)	4,270	1 Parts

T 8.04, 8.05, 8.06

pirotel no antialacity i fou nutlant 541

	Nonlineared childs N. N. 1	a lo contration						
Gittertyp	Gitterbau	Koordinaten der Atome	Gitterkonst	anten in Å =	$10^{-10} \text{ m} = 10$	(*mm*)	201	
Perowskittypus CaTiO ₃	5 einfach kubische Gitter 5 Atome je Zelle	Ca: 000; Ti: $\frac{1}{2} \frac{1}{2} \frac{1}{2}$	E (Resiones	CaTiO ₃ ¹⁵)	3,82	SrTiO ₃ ¹⁶)	3,904	Abse
Spinelltypus Al2MgO4	Alle Teilgitter flächenzentriert. 8 Moleküle je Zelle. Sauerstofffonen in kubisch dichtester Kugelpackung, Kationen in deren Linken		FeAl ₂ O ₄ MgAl ₂ O ₄ ZnAl ₂ O ₄ CdFe ₂ O ₄	8,14 8,09 8,084 8,73	CoFe ₂ O ₄ FeFe ₂ O ₄ MgFe ₂ O ₄ MnFe ₂ O ₄	8,36 8,393 8,37 8,48	NiFe204 ZnFe204 SnZn204 TiZn204	8,34 8,43 8,63 8,45
Hiermit verwandt: ν -Al ₂ O ₂ -Tvpus	10,7 Moleküle je Zelle		2	γ-Al ₂ O ₃	7,92	γ-Fe ₂ O ₃	8,33	pisc
KAI(SO4)2 · 12H ₂ O	4 Moleküle je Zelle, mindestens 8 Parameter. Statt KAl auch: KCr, NH ₄ Al, NH ₄ Fe, RbAl, CsAl usw.	900555 9 ¹ 10 ³ 50 10 50 100	12,1 ≤ a ≤	; 12,5 (gilt für	die bisher un	itersuchten Al	laune)	her late 1819:19
Eisensilizidtypus FeSi	4 Moleküle je Zelle 2 Parameter	S-C CSp	BL 1. 2		FeSi	4,489		ensit Post
Sonstige kubische Gittertypen mit der Gitterkonstanten a		Q 55	14 16 L	$Ag_2S^{17}_{\alpha-N_2})$ $\alpha-N_2^{19})$	4,88 5,65	CO ¹⁸) SiO ₂ ²⁰)	5,64 7,138	aten gegij
Tetragonale Gitter mit den Gitte	erkonstanten a; c							V ⁰
Flächenzentriert tetragonales Gitter	4 einfach tetragonale Gitter 4 Atome je Zelle	$(100, 0, \frac{1}{2}, \frac{1}{2})$	AuCu	3,99; 3,72				n M glez
Zinnoxydultypus SnO	4 Moleküle je Zelle 1 Parameter	4	SnO	5,38; 4,84				olek Es
Rutiltypus TiO ₂	2 Moleküle je Zelle 1 Parameter	223	MgF ₂ SnO ₂ TiO,	4,622; 3,051 4,738; 3,188 4,594; 2,962				ularii KRC
Scheelittypus CaWO4	Körperzentrierte Teilgitter 4 Moleküle je Zelle 3 Parameter	53 8 6 8 8 8	CaWO ₄	5,242; 11,37				rahiqu Yoge
Hexagonale und rhomboedrisch	he Gitter mit den Gitterkonstanten o	1; c bzw. dem Rhomboederv	winkel a					
Hexagonale dichteste Kugel- packung (hcp)	2 einfach hexagonale Gitter Im Idealfall ist $c/a = 1,633$	$000, \frac{1}{3}\frac{2}{3}\frac{1}{2}$	Co Co Mg	2,979; 5,618 2,504; 4,06 3,209; 5,211	Ni Re Zn	2,65; 2,761; 2,664;	4,33 4,458 4,946	en (n inteni
Wolframkarbidtypus WC	2 Atome je Zelle Die Metallatome bilden ein einfach hexagonales Gitter	ofference (H. Buster	y-MoC WC	2,898; 2,808	a - Coat		12	

542

Struktur und Eigenschaften der Materie

8.04, 8.05, 8,00

Gittertyp	Gitterbau	Koordinaten der Atome	Gitterkonstar	$10^{-10} h = 10^{-10} h$	$m = 10^{-1} nm^*$)	
Wurzittypus ZnS	2 Moleküle je Zelle 1 Parameter		BeO CdS CdSe	2,698; 4,380 4,135; 6,749 4,299; 7,010	ZnO ZnS ZnSe	3,250; 5,207 3,814; 6,258 3,996; 6,626
Cadmiumjodidtypus CdJ ₂	 Molekül je Zelle Parameter (Schichtengitter) 	and the second	CdJ ₂	4,24; 6,84		
Korundtypus Al ₂ O ₃ (rhomboedr. Koord. ²¹))	2 Moleküle je Zelle 2 Parameter	1137 - 1,199,104 0.125 - 1,199,104 0.110 - 1,199,104	α-Al ₂ O ₃ Cr ₂ O ₃ α-Fe ₂ O ₃	$\begin{array}{l} 5,13 \ (\alpha = 55^{\circ} \\ 5,34 \ (\alpha = 55^{\circ} \\ 5,42 \ (\alpha = 55^{\circ} \end{array}) \end{array}$	• 14') • 9') • 15')	
Phenakittypus Be ₂ SiO ₄ (rhomboedr. Koord. ²¹))	6 Moleküle je Zelle kein Parameter		Be ₂ SiO ₄ Zn ₂ SiO ₄	7,70 ($\alpha = 108^{\circ}$ 8,68 ($\alpha = 107^{\circ}$	° 1′) ° 45′)	
Sonstige hexagonale Gittertypen (hexag. Koord.: a und c; rhomboedr. Koord. ²¹) a und α)	8(+) 200 3(2)(+) 200 3(2)(+) 200	100 100 100 100 100 100 100 100 100 100	β -Al ₂ O ₃ CuS Hg MoS ₂ Se α -SiO ₂ ²²)	5.57, 22,6 3.792, 16,34 3.00 ($\alpha = 70^{\circ}$ 4,149; 9,496 (3 3,16; 12,3 4,364; 4,959 4,91291; 5,404	32') bei 5 K Zinnober) 461	
Rhombische Gitter mit den Gi	itterkonstanten $a; b; c$					
Aragonittypus CaCO3	4 Moleküle je Zelle 9 Parameter		BaCO ₃ CaCO ₃ SrCO ₃	8,904; 6,430; 7,968; 5,741; 8,414; 6,029;	; 5,314 ; 4,959 ; 5,107	
Sonstige rhombische Gittertypen	101-11 - 10-12 101-11 - 10-12		Cu ₂ S Fe ₃ C U	11,91; 27,31; 4,52; 5,08; 2,853; 5,867;	13,43 6,75 ; 4,950	
¹) bedeutet zyklische Vertauschun Temperaturen: ⁷) ± 0.034 fm; Val ¹³) $T = 170^{\circ}$ C; ¹⁴) $T = 26^{\circ}$ C; ¹⁵) ¹⁷) $T > 180^{\circ}$ C; ¹⁸) fest; $T = 20$ K *) In älteren Tabellen und Bücher	ig; ²) bei $T > 450$ °C, vgl. auch hcp kuum; $T = 22.5$ °C; ⁸) Diamant; ⁴) gilt nur näherungsweise. Würfel mi ² : ¹⁹) $T < 35.4$ K; ²⁰) β -Cristobalit; ⁿ findet sich häufig die Einheit kXU	-Gitter; ³) vgl. auch hcp-Gitte ⁹) amorpher Carborund; ¹⁰) gr if 8 Elementarzellen wiederholi <i>T</i> = 290 °C; ²¹) Umrechnung U; die Umrechnung erfolgt übe	er; ⁴) bei höheren raues Zinn, $T <$ en sich jedoch ex von hexagonalen er 1 kXU = 0,100	Temperaturen; 50 18 °C; ¹¹) vgl. auc akt periodisch mit <i>i</i> in rhomboedrische)202 nm.	at%Cd; ⁵) 50 at th Wurtzittypus; $a = 2 \cdot 3, 82 = 7$; Bestimmungsgi	$%_{0}$ Ni; %) bei höherei 12) Metacinnabarit 64 Å; 16) $T = 25 °C$ rößen; 22) $T = 20 °4$

Literatur: Strukturbericht der Z. Kristallogr. I–VII, Leipzig 1931–1943; fortgesetzt in Structure Reports der Internat. Union of Crystallography, Utrecht ab 1956. Gme lin, alle Bände, Leipzig–Berlin–Weinheim ab 1926. Wyck off (1963/64): Crystal Structures, 2. Aufl. New York–London–Sydney. CRC (1979): CRC Handbook of Chemistry and Physics, 60. Ausg. Boca Raton, Florida.

8.07 Relativistisch korrigierte de Broglie-Wellenlängen λ des Elektrons im Energiebereich $E = 10^2$ bis 10^7 eV – Relativistically corrected de Broglie wavelengths λ for electrons of energies between 10^2 and 10^7 eV (R. Lauer)

Kinetische Energie in eV	Wellenlänge in pm	Kinetische Energie in eV	Wellenlänge in pm	Kinetische Energie in eV	Wellenlänge in pm
$1 \cdot 10^{2}$	122,63	$1 \cdot 10^{4}$	12,20	$1 \cdot 10^{6}$	0,8719
$2 \cdot 10^{2}$	86,71	$2 \cdot 10^{4}$	8,588	$2 \cdot 10^{6}$	0,5043
$5 \cdot 10^{2}$	54,83	$5 \cdot 10^{4}$	5,355	$5 \cdot 10^{6}$	0,2259
$1 \cdot 10^{3}$	38,76	$1 \cdot 10^{5}$	3,701	$1 \cdot 10^{7}$	0,1181
$2 \cdot 10^3$	27,40	$2 \cdot 10^{5}$	2,508	百	2
$5 \cdot 10^{3}$	17,30	$5 \cdot 10^{5}$	1,421	BE Stark	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Berechnet aus: $\lambda = hc_0/\sqrt{2EE_0(1+E/2E_0)}$

8.08 Neutronenstreulängen und Wirkungsquerschnitte – Neutron scattering lengths and cross sections (V.F. Sears u. R. Scherm)

Z Kernladungszahl; El Element; A_r relative Massenzahl; ϱ (in g/cm³) Dichte; I(p) Spin (Parität); c (in %) natürliche Häufigkeit der stabilen Isotope, bei unstabilen Elementen ist stattdessen in () die Halbwertszeit angegeben; b_c (in fm) gebundene kohärente Streulänge; b_i (in fm) gebundene inkohärente Streulänge; σ_c (in barn, 1 barn = 100 fm²) gebundener kohärenter Streuquerschnitt; σ_i (in barn) gebundener inkohärenter Streuquerschnitt; σ_s (in barn) totaler gebundener Streuquerschnitt; σ_a (in barn) Absorptionquerschnitt von Neutronen mit v = 2200 m/s Neutronen (E = 25,30 meV, k = 3,494 Å⁻¹, $\lambda = 1,798$ Å). # kennzeichnet Nuklide mit Resonanzen, deren σ_a vom 1/v-Verlauf stark abweicht.

Literatur: Sears, V.F. (1992): Neutron Scattering Lengths and Cross Sections. In: Neutron News, Vol. 3, Nr. 3.

0.20(12)	σ _a in barn	0,3326(7) 0,3326(7) 0,000519(7) 0	0,00747(1) 5333,(7,) 0	70,5(3) 940,(4,) 0.0454(3)	0,0076(8)	767,(8,)	3835,(9,)	(cc)ccuu,u (7)0350(0,0 (7)25100,0	(7)/Cloop 1,90(3) 1,91(3) 0,000024(8)	0,00019(2) 0,00010(2) 0,236(10) 0,00016(1)	0,0096(5)	0,039(4) 0,036(4) 0,67(11) 0,046(6)	0,530(5)
1400101	$\sigma_{\rm s}$ in barn	82,02(6) 82,03(6) 7,64(3) 3,03(5)	1,34(2) 6,0(4) 1,34(2)	1,37(3) 0,97(7) 1,40(3)	7,63(2)	5,24(11)	3,1(4)	5,751(10) 5,551(3) 5,559(3)	11,51(11) 11,53(11) 5,21(5)	4,232(6) 4,232(6) 4,20(22) 4,20(10)	4,018(14)	2,628(6) 2,695(7) 5,7(3) 1,88(1)	3,28(4)
	$\sigma_{\rm i}$ in barn	80,26(6) 80,27(6) 2,05(3) 0,14(4)	0 1,6(4) 0	0,92(3) 0,46(5) 0,78(3)	0,0018(9)	1,70(12)	3,0(4)	0,001(4) 0 0 0 0 0 0	0,50(12) 0,50(12) 0,00005(10)	0,000(8) 0 0,004(3) 0	0,0008(2)	0,008(9) 0 0,05(2) 0	1,62(3)
	$\sigma_{\rm c}$ in barn	1,7568(10) 1,7583(10) 5,592(7) 2,89(3)	1,34(2) 4,42(10) 1,34(2)	0,454(10) 0,51(5) 0,619(11)	7,63(2)	3,54(5)	0,144(8)	5,550(2) 5,559(2) 5,559(3)	11,01(5) 11,01(5) 11,03(5) 5,21(5)	4,232(6) 4,232(6) 4,20(22) 4,29(10)	4,017(14)	2,620(7) 2,695(7) 5,6(3) 1,88(1)	1,66(2)
0	b _i in fin	25,274(9) 4,04(3) -1,04(17)	-2,5(6) +2,568(3)i 0	-1.89(10) +0.26(1)i -2.49(5)	0,12(3)	grot)	-4,7(3) +1,231(3)i	(2)C,1 - 0 (0)C2 0	2,0(2) -0,02(2)	0 0,18(6) 0	-0,082(9)	0 ±0,6(1) 0	3,59(3)
- table	b _c in fm	-3,7390(11) -3,7406(11) 6,671(4) 4,792(27)	3,26(3) 5,74(7) -1,483(2)i 3,26(3)	-1,90(2) 2,00(11) -0,261(1)i -2,22(2)	7,79(1)	5,30(4) -0.213(2)i	0,1(3) -1,066(3)i	(+)(12)(12)(12)(12)(12)(12)(12)(12)(12)(12	9,37(2) 9,37(2) 6,44(3)	5,803(4) 5,803(4) 5,78(15) 5,84(7)	5,654(10)	4,566(6) 4,631(6) 6,66(19) 3,87(1)	3,63(2)
1	c in %	99,985 0,015 (12,32a)	0,00014	7,5 92,5	100	No. 1	20,0	98,90 1 10	99,63 0,37	99,762 0,038 0,200	100	90,51 0,27 9,22	100
	I(p)	1/2(+) 1(+) 1/2(+)	1/2(+) 0(+)	1(+) 3/2(-)	3/2(-)		3(+)	(-) <i>c</i> /(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(1(+) 1/2(-)	0(+) 5/2(+) 0(+)	1/2(+)	0(+) 3/2(+) 0(+)	3/2(+)
	g in g/cm ³	0,07(d)	0,12(d)	0,534	1,85	2,34	And a	2,25	0,81(d)	1,13(d)	1,1(d)	1,2(d)	0,97
g T 8.08	Ar	1,008 1,0078 2,0141 3,016	4,0026 3,016 4,0026	6,941 6,0151 7,016	9,0122	10,81	10,0129	12,011 12 13 0034	14,0067 14,0031 15,0001	15,9994 15,9949 16,9991 17,9992	18,9984	20,179 19,992 20,994 21,991	22,99
tsetzun	E	¹ H ³	He ³ He	Li 6Li 7Li	Be	В	10B		NNN NSI	0 160 170 180	Ц	Ne 20Ne 21Ne 22Ne	Na
For	Ζ	-	64	m	4	5		9	7	00	6	10	Ξ

T 8.07, 8.08

545 Struktur und Eigenschaften der Materie

	$\sigma_{\rm a}$ in barn	0,063(3) 0,050(5) 0,19(3) 0,0382(8)	0,231(3)	0,171(3) 0,177(3) 0,101(14) 0,107(2)	0,172(6)	0,53(1) 0,54(4) 0,54(4) 0,54(4) 0,227(5) 0,15(3)	33,5(3) 44,1(4) 0,433(6)	0,675(9) 5,2(5) 0,8(2) 0,660(9)	2,1(1) 2,1(1) 35,(8,) 1,46(3)	0,43(2) 0,41(2) 0,68(7) 0,68(7) 6,28(5) 0,74(7) 0,74(7) 1,09(14)	27,5(2)	6,43(6) 0,59(18)
	$\sigma_{\rm s}$ in barn	3,71(4) 4,03(4) 1,93(14) 3,00(18)	1,503(4)	2,167(8) 2,120(6) 2,78(12) 2,64(9)	3,312(16)	1,026(5) 0,9880(14) 3,1(6) 1,52(3) 1,1(8)	16,8(5) 21,8(6) 1,19(5)	$\begin{array}{c} 0.683(4) \\ 77,9(4) \\ 1.5(3,1) \\ 0.421(3) \end{array}$	1,96(11) 2,01(11) 1,6(9) 1,2(6)	2.83(2) 2.90(2) 1.42(8) 0.26(5) 0.25(2) 1.6(2) 0.019(9)	23,5(6)	4,06(3) 2,80(6)
	σ _i in barn	0,08(6) 0 0,28(4) 0	0,0082(6)	0,004(8) 0 0,001(2) 0	0,005(10)	0,007(5) 0 0,3(6) 0	5,3(5) 4,7(6) 0,001(3)	0,225(5) 0 0 0	0,27(11) 0,25(11) 0,5(5)E 0,3(6)	0,05(3) 0 0,5(5)E 0 0	4,5(5)	2,63(3) 0
	$\sigma_{\rm c}$ in barn	3,631(5) 4,03(4) 1,65(13) 3,00(18)	1,495(4)	2,1633(10) 2,120(6) 2,78(12) 2,64(9)	3,307(13)	1,0186(7) 0,9880(14) 2,8(2) 1,52(3) 1,1(8)	11.526(2) 17,06(6) 1,19(5)	$\begin{array}{c} 0.458(3) \\ 77,9(4) \\ 1,5(3,1) \\ 0,421(3) \end{array}$	1,69(2) 1,76(2) 1,1(8) 0,91(5)	2.78(2) 2.90(2) 1.42(8) 0.31(4) 0.25(2) 1.6(2) 0.019(9)	19,0(3)	1,427(11) 2,80(6)
	$b_{\rm i}$ in fm	0 1,48(10) 0	0,256(10)	0 (6)60,0 0	0,2(2)	0 1,5(1,5) 0	6,1(4) 0,1(1)	000	1,4(3) 1,5(1,5)	00 000	-6,0(3)	0
d'potri-	bc in fm	5,375(4) 5,66(3) 3,62(14) 4,89(15)	3,449(5)	4,1491(10) 4,107(6) 4,70(10) 4,58(8)	5,13(1)	2,847(1) 2,804(2) 4,74(19) 3,48(3) 3,(11,)E	9,5770(8) 11,65(2) 3,08(6)	1,909(6) 24,90(7) 3,5(3,5) 1,830(6)	3,67(2) 3,74(2) 3,(1,)E 2,69(8)	$\begin{array}{c} 4,70(2) \\ 4,80(2) \\ 3,36(10) \\ -1,56(9) \\ 1,42(6) \\ 3,6(2) \\ 0,39(9) \end{array}$	12,29(11)	-3,370(13) 4,72(5)
100	c in %	78,99 10,00 111,01	100	92,23 4,67 3,10	100	95,02 0,75 4,21 0,02	75,77 24,23	0,337 0,063 99,600	93,258 0,012 6,730	96,941 0,647 0,135 2,086 0,004 0,187	100	8,2
Same .	I(b)	0(+) 5/2(+) 0(+)	5/2(+)	0(+) 1/2(+) 0(+)	1/2(+)	0(+) 3/2(+) 0(+) 0(+)	3/2(+) 3/2(+)	$(+)0 \\ $	3/2(+) 4(-) 3/2(+)	$\begin{array}{c} 0(+) \\ 0(+) \\ 0(+) \\ 0(+) \\ 0(+) \\ 0(+) \\ 0(+) \end{array}$	7/2(-)	0(+)
turas S	ę in g/cm ³	1,74	2,702	2,33	1,8	1,96	1,6(d)	1,41(d)	0,86	1,55	2,99	4,51
5 T 8.08	Ar	24,305 23,985 24,986 25,983	26,982	28,086 27,977 28,977 29,974	30,974	32,06 31,972 32,972 33,968 35,967	35,453 34,689 36,966	39,948 35,968 37,963 39,962	39,098 38,964 39,964 40,962	40,08 39,963 41,959 42,959 43,955 45,954 45,953	44,956	47,88 45,953
setzung	EI	Mg 24Mg 25Mg 26Mg	AI	Si 28Si 30Si 30Si	Ρ	32S 34S 36S	SCI 37CI 37CI	Ar ³⁶ Ar ³⁸ Ar ⁴⁰ Ar	59K 10K 41K	Ca 40Ca 42Ca 43Ca 44Ca 48Ca 48Ca 48Ca	Sc	Ti ⁴⁶ Ti
Fort	Ζ	12	13	14	15	16	17	18	19	20	21	22

																								-
σ _a in bam	1,7(2) 8,30(9)	2,2(3) 0,179(3)	5,08(4)	4,9(1)	3,05(8)	0,76(6) 18,1(1,5)	0,36(4)	13,3(2)	2,56(3) 2,25(18)	2,59(14)	1,28(5)	37,18(6)	4,49(16)	4,0(3) 2.9(2)	2,5(8)	$(c)c, t_1$ (1,52(3))	3,78(2)	2,17(3)	1,11(2)	0.62(6)	6,8(8)	1,1(1) 0,092(5)	2,75(3) 2,18(5)	3,61(10)
σ _s in bam	3,1(2) 4,32(3)	3,4(3) 4,34(15)	5,10(6)	5,09(6)	3,49(2)	3,042(12) 8,15(17)	2,60(11)	2,17(3)	11,62(10) 2,2(1)	12,42(7)	28,(26,)	5,6(3)	18,5(3)	0.99(7)	9,2(3)	(1)(1)(7)(7)	8,03(3)	14,5(5)	4,131(10)	5,42(5) 4.48(8)	7,46(15)	4,57(5) 4,5(1,5)	6,83(3) 7,89(4)	5,23(5)
σ _i in bam	1,5(2) 0	5,3(5) 0	5,08(6) 0.5(5)F	5,07(6)	1,83(2) 0	0 5,93(17)	0	0,40(2)	0,40(11) 0	0 3/3/5	7(5)50	4,8(3)	5,2(4)	00	1,9(3)	00	0,55(3)	0,40(4)	0,077(7)	0	0,28(3)	0 0	0,16(3) 0,091(11)	0,084(8)
σ _c in bam	1,57(6) 4,32(3)	0,12(1) 4,34(15)	0,01838(12)	0,0203(2)	1,660(6) 2.54(6)	3,042(12) 2,22(3)	2,60(11)	1,//(2)	11,22(5) 2,2(1)	12,42(7)	28,(26,)	0,779(13)	13,3(3)	20,1(4) 0.99(7)	7,26(11)	(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(7,485(8)	14,1(5)	4,054(7)	5,42(5) 4,48(8)	7,18(15)	4,57(5) 4,5(1,5)	6,675(4) 7,80(4)	5,15(5)
b _i in fin	-3.5(2)	0,1(2)		6,35(4)	0	0 6,87(10)	0	1, /9(4)	0	0	0	-6,2(2)		00	±3,9(3)	00	(2)220	1,79(10)		00	-1,50(7)	00	-0,85(5)	-0,82(4)
b _c in fin	3,53(7) -5,86(2)	0,98(10) 5,88(10)	-0,3824(12) 7.6(6)	-0,402(2)	3,635(7) -4.50(5)	4,920(10) -4,20(3)	4,55(10)	(81)00/-	9,45(2) 4,2(1)	9,94(3)	15.(7.)	2,49(2)	10,3(1)	2,8(1)	7,60(6)	-0,37(7)	7,718(4)	10,61(19)	5,680(5)	5.97(5)	7,56(8)	6,03(3) 6,(1,)E	7,288(2) 7,88(2)	6,40(3)
c in %	7,4 73,8	5,4 5,2	0.250	99,750	4.35	83,79 9,50	2,36	100	5,8	21.16	0,3	100	26 07	26,10	1,13	16'0	69.17	30,83	7 0 1	27.9	4,1	18,8 0,6	60,1	39,9
I(p)	5/2(-) 0(+)	$(-)^{7/1}$	(+)	7/2(-)	(+)0	0(+) 3/2(-)	(+)0	(-)7/c	(+)0	(+)(-)(-)	(+)0	7/2(-)	1170	(+)0	3/2(-)	(+)0	3/2(-)	3/2(-)	0011	(+)0	5/2(-)	0(+) (+)0	3/2(-)	3/2(-)
e in g/cm ³			6,12		6,93	R	45	(,4)	7,87		Barrel	8,9	8,91				8,96	2.13	7,13			53	5,91	
Ar	46,952 47,948	48,948	50,942 49,947	50,944	51,996 49.946	51,941 52,941	53,939	966,46	55,847 53,94	55,935	57,933	58,933	58,69	59,931	60,931	63,928	63,546 62.93	64,928	65,38	65.926	66,927	67,925 69,925	69,72 68,926	70,925
EI	47Ti 48Ti 40	SoTi I	V 50 V	SIV	Cr SoCr	S2Cr	54Cr	UM	Fe 54Fe	56Fe 57Fe	58Fe	Co	Ni Sen:	IN 09	61 Ni 62 Ni	iN ⁵⁶	Cu	65Cu	Zn 647	17299	uZ ⁶⁷ Zn	uZ01	Ga 69 Ga	71Ga
Z	44	R.	23		24	92	30	2	26		3	27	28				29	-	30			2	31	201

T 8.08

Struktur und Eigenschaften der Materie

L rektor	$\sigma_{\rm a}$ in barn	2,20(4) 3.0(2)	0.8(2)	(4) (4)	0,16(2)	4,5(1)	11.7(2)	51,8(1,2)	42.(4.)	0,43(2)	0,044(3)	6,9(2)	2,7(2)	25,(1,)	6,4(9)	29.(20,)	185,(30,)	0,003(2)	0,38(1)	0,48(1) 0,12(3)	1,28(6)	0,87(7)	16.(3.)	0,058(4)	1,28(2)	0,185(3)	0,011(5)	0.22(6)	0,0499(24) 0,0229(10)
	$\sigma_{\rm s}$ in barn	8,60(6) 12.6(3)	9,1(2)	4,/(3)	8,(3,)	5,50(2)	8,30(6)	0,1(6)	8,65(16)	8,5(2)	5,05(13)	5,90(9)	5,84(12)	7,68(13)	13490	101 102 44	AND A	8,2(4)	6,8(4)	6,7(5) 7,1(5)	6,25(10)	6,(2,)	7.4(5)	6,42(11)	7,70(9)	6,46(14)	5,1(2)	5,1(2) 6 9(4)	8,4(4) 3,8(1)
	σ_i in barn	0,18(7) 0	0	(5)C,1	00	0,060(10)	0,32(6)	00	0,05(26)	0	00	0,10(9)	0,15(6) 0,05(2)	0,01(14)	00	0	0	0	0,5(4)	0,5(5)E 0,5(5)E	0,06(11)	0	0 0.5(5)E	0	0,15(8)	0,02(15)	0 15/41	(+)c1,0 0	00
	$\sigma_{\rm c}$ in barn	8,42(4) 12.6(3)	9,1(2)	(c)/1/2	8,(3.)	5,44(2)	7,98(2)	0,1(6)	8,6(2)	8,5(2)	5,05(13)	5,80(3)	5,81(12) 5,79(12)	7,67(4)	Carrier Contract	- Constant	ASerth	8,2(4)	6,32(4)	6,2(2) 6,6(2)	6,19(4)	6,(2,)	4,04(7) 6,88(13)	6,42(11)	7,55(4)	6,44(5)	5,1(2)	(7)(7)	8,4(4) 3,8(1)
	$b_{\rm i}$ in fim	0	0	5,4(5)	0	-0,69(6)		00	±0,6(1,6)	0	0		-1,1(2) 0,6(1)	(PHP)	00	0	0	0	0.63(10)			0	0	0	1,1(3)		0 1 00/151	0	00
10 P40(3)	b _c in fin	8,185(20) 10.0(1)	8,51(10)	7 58/101	8,2(1,5)	6,58(1)	7,970(9)	0,8(3,0)	8,25(8)	8,24(9)	6,34(8)	6,795(15)	6,79(7)	7,81(2)	Santa)	Contraction of the second	-Abber	8,1(2)	7,09(2)	7,23(12)	7,02(2)	-7,(1,)E	7.40(7)	7,15(6)	7,75(2)	7,16(3)	6,4(1) 0 7(1)	7 4(2)	8,2(2) 5,5(1)
30.0	c in %	20.5	27,4	24.5	7,8	100		0.0	7,6	23,5	9,4	20.00	49,05	5	0.35 2.25	11,6	C,11 0.72	17,3		27,83		0.56	7.00	82,58	100	21.12	01,45	17.19	17,28 2,76
3736-3	I(p)	(+)0	(+)0	(+)7/6	(+)0	3/2(-)		(+)0	1/2(-)	(+)0	(+)0		$\frac{3}{2(-)}$	(11)	(+)0	(+)0	9/2(+)	(+)0		3/2(-)	LLAN C	(+)0	9/2(+)	(+)0	1/2(-)		(+)(+)	(+)7/0	0(+) 0(+)
	g in g/cm ³	5,33			-115	5,73	4,79		118	1.96		3,12	No.	2,16(d)		18.5	1.40		1,53		2,67		21,0		4,47	6,5	194	- Sunda Int	
g 1 8.08	$A_{\rm r}$	72,59	71,922	100 22	75,924	74,922	78,96	75 010	76,92	71,917	116,18	79,904	80,916	83,8	79.916	81,913	82,914	85,911	85,468	86,908	87,62	83,913	606.908	87,906	88,906	91,22	CU6, 68	91,905	93,906 95,908
setzun	EI	Ge 70Ge	72Ge	74 C.o	⁷⁶ Ge	As	Se	765.0	77Se	78 Se	⁸² Se	Br	⁸¹ Br	Kr	⁸⁰ Kr	⁸² Kr	84Kr	86Kr	Rb.	87Rb	Sr	84Sr 86c-	87Sr	88Sr	Y	Zr	1702	92 7r	94Zr 96Zr
Fort	Z	32			R	33	34		2	-		35	a	36		18	P		37		38		p		39	40	-	-	

71(4) 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	71(4) 2,48(4) 000(14) 0,019(2) 81(12) 0,019(2) 83(9) 0,5(2) 11(5) 13,1(3) 83(9) 0,5(2) 14(12) 0,127(6) 69(12) 0,127(6) 6(1) 2,26(1,1) 6(1) 2,28(1,1) 6(1) 2,28(1,1) 6,9(1,2) 0,28(2) 6,9(1,2) 1,3(7) 6,9(1,1) 2,28(1,1) 1,3(3) 3,3(7)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
04(5) 5,71(4) 6,00(14) 5,81(12) 5(5)E 6,5(5) 4,83(9) 5(5)E 7,1(5)	04(5) 5,71(4) 5(5)E 5,81(12) 5(5)E 6,5(5) 5(5)E 7,1(5) 7,1(5) 5,44(12) 5,69(12) 5(6(1) 4(1) 6,6(1)	04(5) 5,71(4) 5(5)E 5,81(12) 5,81(12) 5,81(12) 5,81(12) 5,81(12) 5,81(12) 5,81(12) 5,81(12) 5,81(12) 5,81(12) 5,81(12) 5,81(12) 5,81(12) 5,81(12) 5,81(12) 5,81(12) 6,6(1) 6,6(1) 6,6(1) 6,6(1) 7,5(1,4) 7,5(1,4) 7,5(1,4) 7,5(1,3) 8(1,0) 5,1(6) 2,1(3) 7,5(1,3)	04(5) 5.71(4) 5(5)E 5.81(12) 5(5)E 5.81(12) 5.81(12) 5.81(12) 5(5)E 6.5(5) 5.81(12) 5.81(12) 5(5)E 6.5(5) 5(5)E 5.84(12) 5(5)E 5.64(12) 5(6) 5.66(1) 6.6(1) 6.6(1) 6.6(1) 6.6(1) 6.6(1) 6.6(1) 6.6(1) 6.6(1) 8(1,0) 7.5(1,4) 7.5(1,4) 7.5(1,4) 7.5(1,4) 7.5(1,4) 7.5(1,4) 7.5(1,4) 7.5(1,3) 7.5(1,4) 7.5(1,4) 7.5(1,4) 7.5(1,3) 7.5(1,4) 7.5(1,5) 7.5(1,4) 7.5(1,5) 7.5(1,6) 7.5(1,5) 7.5(1,6) 7.5(1,5) 7.5(1,6)	04(5) 5.71(4) 5(5)E 5.71(4) 5(5)E 5.81(12) 5(5)E 6.5(5) 5(5)E 6.5(5) 5(5)E 6.5(5) 5(5)E 6.5(5) 5(5)E 6.5(7) 5(112) 5.81(12) 5(5)E 6.5(7) 5(12) 5.60(12) 5(14) 6.6(1) 6(11) 6.6(1) 6(12) 7.5(1,4) 775(1,4) 7.5(1,4) 73(1) 5.1(6) 13(3) 7.5(1,4) 5.1(6) 5.1(6) 33(3) 7.5(1,4) 5.1(6) 5.1(6) 33(3) 2.50(5) 5.6(1) 3.1(2,5) 3.1(2,5) 3.1(2,5) 3.1(1) 5.6(4)
0 0,5(5)E 0 0,5(5)E 4,83(9) 0,5(5)E 7,1(5)	0 0,5(5)E 0,5(5)E 0,5(5)E 0,5(5)E 0,5(5)E 0,4(1) 0,4(1) 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 0 \\ 0.5(5)E \\ 0.5(5)E \\ 0.5(5)E \\ 0.5(5)E \\ 0.5(5)E \\ 0.5(6)E \\ 0.4(1) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{c} 0 \\ 0.5(5)E \\ 0.5(5)E \\ 0.5(5)E \\ 0.5(5)E \\ 0.5(5)E \\ 0.5(6)E \\ 0.5(6)E \\ 0.4(1) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{ccccccc} 0 & 5,81(12) \\ 0.5(5)E & 5,81(12) \\ 0.5(5)E & 5,44(12) \\ 0 & 0,5(5)E & 5,44(12) \\ 0 & 0,4(1) & 5,69(12) \\ 0 & 5,69(12) \\ 0 & 0,3(3)E & 5,69(13) \\ 0 & 0,3(3)E & 4,6(3) \\ 0 & 0 & 7,5(1,4) \\ 0 & 0 & 0 & 7,5(1,4) \\ 0 & 0 & 0 & 7,5(1,4) \\ 0 & 0 & 0 & 7,5(1,4) \\ 0 & 0 & 0 & 7,5(1,4) \\ 0 & 0 & 0 & 7,5(1,4) \\ 0 & 0 & 0 & 7,5(1,4) \\ 0 & 0 & 0 & 7,5(1,4) \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$
0 0.5(5)E	0 0,5(5)E 0,5(5)E 0,4(1) 0 0 0	0 0.5(5)E 0.5(5)E 0.4(1) 0 0 0 0,3(3)E 0,093(9) 0 0,8(1,0) 0 0 0,8(1,0)	0 0.5(5)E 0.5(5)E 0.5(5)E 0.4(1) 0 0 0 0,3(3)E 0,3(3)E 0,3(1,0) 0,8(1,0) 0 0 0,28(3) 0,32(5) 0,32(5)	0 0.5(5)E 0.5(5)E 0.4(1) 0 0 0 0,3(3)E 0,3(3)E 0,3(3)E 0,3(3) 0,0(1)0(1) 0,0(1)0(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(
v 1 101100	21(5) 21(5) 21(5) 0 0 0 0 0 0 0 0 0 0 0 0 0	(14) (12) (12) (12) (12) (12) (12) (12) (12	44(12) 44(12) 69(12) 0 8(5) 0 21(5) 0 234(6) 0 5(1,4) 0 5(1,4) 0 11(6) 0 11(6) 0 11(6) 0 11(6) 0 117(2) 0 118(1) 0	34(12) 44(12) 69(12) 69(12) 8(5) 0 21(5) 0 34(6) 0 339(9) 0 55(1,4) 0 55(1,4) 0 55(1,4) 0 55(1,4) 0 55(1,4) 0 55(1,4) 0 55(1,4) 0 56(1,4) 0 56(1,4) 0 56(1,4) 0 56(1,4) 0 56(1,4) 0 56(1,4) 0 56(1,4) 0 56(1,4) 0 56(1,4) 0 56(1,4) 0 56(1,4) 0 56(1,4) 0 56(1,4) 0 56(1,4) 0 56(1,4) 0 57(1) 0 57(1) 0 54(1) 0 54(1) 0 54(1) 0
5 44(12)	5,69(12) 5,8(5) 6,21(5)	5,69(12) 5,8(5) 6,21(5) 6,21(5) 4,34(6) 4,34(6) 7,5(1,4) 7,5(1,4) 5,1(6) 5,1(6) 5,1(6) 5,1(6)	5,69(12) 5,8(5) 6,21(5) 6,21(5) 4,34(6) 4,34(6) 4,39(9) 7,5(1,4)(1,4)(1,4)(5,69(12) 5,8(5) 6,21(5) 6,21(5) 7,5(1,4
0	0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
0 0	00 0 0	田 田 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	(1) (1) (1) (1) (1) (1) (1) (1)	е с с с с с с с с с с с с с с с с с с с
6,58(7) 6,73(7) 6,8(3)	7,03(3)	7,03(3) 7,03(4) 5,88(4) 5,88(4) 7,7(7)E 7,7(7)E 5,5(3) 6,4(4) 6,4(4) 4,1(3) 6,1(7) 7,7(7)E	7,03(3) 5,88(4) 5,88(4) 5,91(6) 7,7(7)E 7,7(7)E 7,7(7)E 7,7(7)E 6,4(4) 4,1(3) 7,7(7)E 5,922(7) 7,7(7)E 5,922(7) 7,7(7)E	7,03(3) 5,88(4) 5,88(4) 7,7(7)E 7,7(7)E 7,7(7)E 5,91(6) 6,4(4) 7,7(7)E 5,92(2) 4,1(3) 7,7(7)E 5,2(3) 6,2(1) 5,2(4) 5,2(1)
24,13 9,63	(5,5 5,5 1,9 12,7 12,6 17,0 31,6	(2,15,10 a) 5,5 1,9 12,6 17,0 31,6 18,7 100 11,14 22,33 26,46 11,72	(2,15,10 a) 5,5 1,9 12,6 17,0 11,14 18,7 100 11,14 22,33 26,46 11,72 21,33 26,46 11,72 21,33 26,46 11,72 21,33 26,46 11,72 21,33 26,46 11,72 27,33 27,45 2,33 27,35 27,35 27,35 27,35 27,35 27,35 27,35 27,35 27,35 27,35 27,35 27,35 27,35 27,35 27,35 27,35 27,35 27,35 27,45 27,45 27,45 27,45 27,45 27,45 27,45 27,45 27,45 27,45 27,45 27,45 27,5	(2,12,10, 4) 5,5 1,5,5 1,2,7 1,2,6 1,2,6 1,2,6 1,1,4 1,1,4 1,1,4 1,1,4 1,1,4 1,1,4 1,1,4 1,1,4 1,1,7 22,33 26,46 11,72 1,25 11,72 12,53 12
(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)($(+)^{2(+)}$ $(+)^{2(+)}$ $(+)^{2(+)}$ $(+)^{2(+)}$ $(+)^{2(+)}$ $(+)^{2(+)}$	$ \begin{array}{c} & (1,2,1) \\ (1,2,1$	$ \begin{array}{c} & (1) \\ (1$	$ \begin{array}{c} & (1) \\ (1$
000	2,3	2,3 2,5 2,5 1 1 2,5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2,3 5 5 5 5 5 5 5 5 5 6 0 0 5 5 5 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1	2,3 2,5 0,5 0,5 0,5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
,905 ,907	,906 ,908 ,906 ,906 ,906 ,906	000 007 007 006 006 006 006 006 006 006	000 007 007 006 006 006 006 006 006 006	000 007 007 008 008 008 008 008 008 008
Mo 99,	201 101, 201 201, 99, 201, 201, 201, 201, 201, 201, 201, 201	2010 100 100 100 100 100 100 100 100 100	Main 100,000 Main 97,000 Main 97,000 Main 97,000 Main 100,000	Mark 1001 Mark 1005
98 M(100 M	84 96Ru 99Ru 99Ru 100R 101R	Ru 99Ru 99Ru 100R 101R 102R 102R 102R 102P 102P 102P 105P 105P 105P	Ru 99, Ru 99, Ru 99, Ru 100, Rh 101, Rh 102, Rh 102, Rh 102, Rh 103, Rh 104, Rh10, Rh 104, Rh 104, Rh10, Rh 104, Rh 104, Rh 104, Rh	Ru 98Ru 99Ru 100R 100R 100R 100R 100R 100R 100R 10
43	and the second second	45 45 46	45 45 446 446	44 45 46 47 48 48

T 8.08

Smithur and Eigenschaften der Ma

Fort	setzun	g T 8.08				10000 I					
Z	EI	Ar	Q in g/cm ³	(<i>d</i>)]	c in %	<i>b</i> _c in fm	$b_{\rm i}$ in fm	$\sigma_{\rm c}$ in barn	σ_i in barn	$\sigma_{\rm s}$ in barn	$\sigma_{\rm a}$ in barn
121	114Cd 116Cd	113,903	125	(+)0 (+)	28,72 7,47	7,5(1) 6,3(1)	00	7,1(2) 5,0(2)	0.0	7,1(2) 5,0(2)	0,34(2) 0,075(13)
49	ц	114,82	7,36			4,065(20)	Contraction of the second	2,08(2)	0,54(11)	2,62(11)	193,8(1,5)
-	¹¹³ In ¹¹⁵ In	112,904 114,904	Rise Contraction	9/2(+) 9/2(+)	4,3 95,7	5,39(6) 5,39(6) 4,01(2) -0,0562(6)i	±0,017(1) -2,1(2)	3,65(8) 2,02(2)	0,000037(5) 0,55(11)	3,65(8) 2,57(11)	12,0(1,1) 202,(2)
50	Sn 112 Sn 114 Sn	118,69	7,28	(+)0	1,0	6,225(2) 6,(1)E 6,23(3)	00	4,870(3) 4,5(1,5)	0,022(5) 0	4,892(6) 4,5(1,5)	0,626(9) 1,00(11)
	115Sn 116Sn	114,903		1/2(+)	0,4	6,(1)E 5,93(5)	0	4,5(1,5)	0,3(3)E	4,8(1,5)	30,(7)
	117Sn 118Sn	116,903		1/2(+)	7,7	6,48(5)	0	5,28(8)	0,3(3)E	5,6(3)	2,3(5)
10	119 Sn 120 Sn	118,903	2.12	1/2(+)	8,6	6,12(5)		4,71(8)	0,3(3)E	5,0(3)	2,2(5)
1	122 Sn 124 Sn	121,903	2 St	(+)0 (+)0	5,6 5,6	5,74(5) 5,97(5)	000	2,29(6) 4,14(7) 4,48(8)	000	4,14(7) 4,48(8)	0,14(2) 0,18(2) 0,133(5)
51	Sb 121Sb 123Sb	121,75 120,904 122,904	6,69	5/2(+) 7/2(+)	57,3 42,7	5,57(3) 5,71(6) 5,38(7)	-0.05(15) -0.10(15)	3,90(4) 4,10(9) 3,64(9)	0,00(7) 0,0003(19) 0,001(4)	3,90(6) 4,10(9) 3,64(9)	4,91(5) 5,75(12) 3,8(2)
52	Te 120Te	127,6 119,904	6,00	(+)0	960'0	5,80(3) 5,3(5)	0	4,23(4) 3.5(7)	0,09(6) 0	4,32(5) - 3.5(7)	4,7(1) 2,3(3)
-	¹²² Te	121,903	City of the second	0(+) 1/2(+)	2,60 0,908	3,8(2) -0,05(25)	0 -2,04(9)	0,002(3)	0 0,52(5)	1,8(2) 0,52(5)	3,4(5) 418,(30)
12	124Te	123,903		(+)(+)(+)	4,816	7,96(10)	0 121130	8,0(2)	0	8,0(2)	6,8(1,3)
10	126Te	125,903	191	(+)0	18,95	5,56(7)	0	3,88(10)	0	3,88(10)	(01)0011
	¹³⁰ Te	129,906		(+)0	31,69	5,89(7) 6,02(7)	00	4,36(10) 4,55(11)	00	4,36(10) 4,55(11)	0.215(8) 0.29(6)
53	J	126,905	4,93	5/2(+)	100	5,28(2)	1,58(15)	3,50(3)	0,31(6)	3,81(7)	6,15(6)
54	Xe	131,29	3,5(d)	10001	100,80	4,92(3)	0101	3,04(4)	0,15(3)	(41)002	23,9(1,2)
(A) ;;	126 Xe	123,906	19 22	(+)0	0,10	(CALLER)	000	(charte	000	States of	165,(20) 3,5(8)
	129 Xe	128,905	pr 8,cm,	$\frac{0(+)}{1/2(+)}$	26,4	in Britte	0	in patie.	0	T mild at	i8, 21.(5)
1	¹³⁰ Xe	129,904	0	0(+) 3/2(+)	4,1 21,2	N 8.261	. 0	100 00 000 000 000 000 000 000 000 000	0	A RAN	i26, 85,(10)

FOL	tsetzun	g 1 0.00	1 2.3	11/2/1-1	100	1 5'05(2)					
Z	Ele	$A_{\rm r}$	ρ in g/cm ³	I(p)	c in %	b _c in fm	<i>b</i> _i in fin	$\sigma_{\rm c}$ in barn	σ _i in barn	$\sigma_{\rm s}$ in barn \cdot	$\sigma_{\rm a}$ in barn
18	^{1,32} Xe ^{1,34} Xe ^{1,36} Xe	131,904 133,905 135,907	20	(+)0 (+)0	26,9 10,4 8,9		000	巍	000	and the	0,45(6) 0,265(20) 0,26(2)
55	Cs	132,905	1,873	7/2(+)	100	5,42(2)	1,29(15)	3,69(3)	0,21(5)	3,90(6)	29,0(1,5)
56	Ba	137,33	3,51			5,07(3)		3,23(4)	0,15(11)	3,38(10)	1,1(1)
	132Ba	131,905		(+)0	0,10	-3,6(6) 7,8(3)	00	1,6(5) 7,6(6)	0.0	1,6(5)	30,(5,) 7.0(8)
	134Ba	133,905		(+)0	2,42	5,7(1)	0	4,08(14)	0	4,08(14)	2,0(1,6)
-	136Ra	135,904	19.94	3/2(+)	6,59	4,67(10)	0	2,74(12)	0,5(5)E	3,2(5)	5,8(9)
	137Ba 138Ba	136,905		3/2(+)	71.70	6,83(10) 4,84(8)	0	5,86(17) 2,94(10)	0,5(5)E 0	6,4(5) 2,94(10)	3,6(2) 0,27(14)
57	La 138La 139La	138,906 137,907 138,906	6,16	5(+) 7/2(+)	16'66 60'0	8,24(4) 8,(2,)E 8,24(4)	3,0(2)	8,53(8) 8,(4,) 8,53(8)	1,13(19) 0,5(5)E 1,13(15)	9,66(17) 8,5(4,0) 9,66(17)	8,97(4) 57,(6) 8,93(4)
58	Ce 136Ce	140,12	6,77	(+)0	0.19	4,84(2) 5.80(9)	0.110	2,94(2)	0,00(10)	2,94(10) 4 23(13)	0,63(4)
	¹³⁸ Ce ¹⁴⁰ Ce	137,906		(+)0	0,25 88,48	6,70(9) 4,84(9)	000	5,64(15) 2,94(11)	000	5,64(15) 2,94(11)	0,57(4)
59	Pr	140,908	6,8	0(+) 5/2(+)	100	4, / 3(9) 4,58(5)	-0,35(3)	2,64(6)	0.015(3)	2,84(11) 2,66(6)	(c)c90 (11.5(3)
60	PN	144,24	7,01	(H)X		7,69(5)	- Water	7,43(10)	9,2(8)	16,6(8)	50,5(1,2)
2	PN241	141,908 142,91	1761	0(+) 7/2(-)	27,16 12,18	7,7(3) 14,(2,)E	0 ±21.(1.)	7,5(6) 25.(7.)	0 55.(7.)	7,5(6) 80.(2.)	334.(10.)
	hth Nd	143,91		(+)0	23,80 8 29	2,8(3) 14 (7)F	0	1,0(2)	0 5 (5)E	1,0(2)	3,6(3)
3	PN951	145,913	1.0.1	(+)0	17,19	8,7(2)	0	9,5(4)	0, ² , ¹ , ² , ¹	9,5(4)	1,4(1)
1	PN051	147,917	- MULL	(+)0	5,63	5,7(3) 5,3(2)	00	4,1(4) 3.5(3)	00	4,1(4) 3,5(3)	2,5(2) 1,2(2)
61	Pm	146,915		7/2(+)	(2,62a)	12,6(4)	±3,2(2,5)	20,0(1,3)	1,3(2,0)	21,3(1,5)	168,4(3,5)
62	Sm	150,36	7,5		0070	0,80(2)	ALL	0,422(9)	39,(3,)	39,(3,)	5922,(56)
	144Sm 147Sm	143,912 146,915		0(+) 7/2(-)	3,1 15,1	-3,(4,)E 14,(3,)	0 ±11.(7.)	1,(3,) 25.(11.)	0 14.(19.)	1,(3,)	0,7(3)
	148 Sm	147,915		(+)0	11,3	-3,(4,)E	0	1,(3,)	0	1,(3,)	2,4(6)
#	149Sm	148,917	in some	7/2(-)	13,9	-19,2(1)	±31,4(6)	63,5(6)	137,(5,)	200.(5.)	42080,(400,)
1	150Sm	149,917		(+)0	7,4	14,(3))	0	25,(11,)	0	25,(11,)	104,(4,)

T 8.08

Striktur und Eigemehaften der Mate

For	setzung	g T 8.08									
Z	El	Ar	g in g/cm ³	I(p)	c in %	b _c in fin	<i>b</i> i in fin	$\sigma_{\rm c}$ in barn	σ _i in barn	σ _s in bam	σ_a in barn
	¹⁵² Sm ¹⁵⁴ Sm	151,92 153,922		(+)0 (+)	26,6 22,6	-5.0(6) 9.3(1,0)	00	3,1(8) 11,(2,)	0	3,1(8) 11,(2,)	206.(6,) 8,4(5)
63	Eu	151,96	5,2			7,22(2)		6,75(4)	2,5(4)	9,2(4)	4530,(40)
#	151 Eu	150,92		5/2(+)	47,8	6,13(14)	±4,5(4)	5,5(2)	3,1(4)	8,6(4)	9100,(100)
	153Eu	152,921		5/2(+)	52,2	8,22(12)	±3,2(9)	8,5(2)	1,3(7)	9,8(7)	312,(7)
64	Gd	157,25	7,9	(FI)		6,5(5)	-	29,3(8)	151,(2,)	180,(2,)	49700,(125)
#	152Gd 154Gd 155Gd	151,92 153,921 154,923		$0(+) \\ 0(+) \\ 3/2(-)$	0,2 2,1 14,8	10.(3.)E 10.(3.)E 10.(3.)E 6.0(1)	0 0 ±5,(5,)E	13,(8,) 13,(8,) 40,8(4)	0 0 25,(6,)	13,(8,) 13,(8,) 66,(6,)	735,(20) 85,(12) 61100,(400)
#	¹⁵⁶ Gd	155,922	101	0(+) 3/2(-)	20,6 15,7	-17,0(1)i 6,3(4) -1,14(2)	-13,16(9)i 0 ±5,(5,)E	5,0(6) 650,(4,)	0 394,(7,)	5,0(6) 1044,(8,)	1,5(1,2) 259000,(700)
	158Gd	157,924 159,927		(+)0 (+)0	24,8 21,8	9,15(5)	0 0 0	10,(5,) 10,52(11)	00	10,(5,) 10,52(11)	2,2(2) 0,77(2)
65	Tb	158,925	8,3	3/2(+)	100	7,38(3)	-0,17(7)	6,84(6)	0,004(3)	6,84(6)	23,4(4)
99	Dy	162,5	8,5	1+18)[16,9(2)	1215000E	35,9(8)	54,4(1,2)	90,3(9)	994,(13)
81.7	156Dy 158Dy	155,924 157,924	84	(+)0 (+)	0,06 0,10	6,1(5) 6,4,)E	00	4,7(8) 5,(6,)	0	4,7(8) 5,(6,)	33,(3) 43,(6)
	161 DV	159,925		0(+) 5/2(+)	2,34	6,7(4) 10,3(4)	0 +4 9(8)	5,6(7)	3(1)	5,6(7)	56,(5) 600 (25)
	162 Dy	161.927		(+)0	25,5	-1,4(5)	0	0,25(18)	0	0,25(18)	194,(10)
	164 Dy	163,929		$(-)^{7/2}(-)^{-}$	28,1 28,1	5,0(4) 49,4(2) -0,79(1)i	0	3,1(5) 307,(3,)	0,21(10)	3,3(5) 307,(3,)	124,(7) 2840,(40)
67	Но	164,93	8,8	7/2(-)	100	8,01(8)	-1,70(8)	8,06(16)	0,36(3)	8,42(16)	64,7(1,2)
68	Er 162 Fr	167,26	0,6	(+)0	0.14	7,79(2) 8,8(2)	CUS O	7,63(4)	1,1(3)	8,7(3) 9,7(4)	159,(4)
10	164 Er 166 Er	163,929		(+)0	1,56 33,4	8,2(2) 10,6(2)	000	8,4(4)	000	8,4(4)	13.(2) 19.6(1.5)
	167Er	166,932		7/2(+)	22,9	3,0(3)	1,0(3)	1,1(2)	0,13(8)	1,2(2)	659.(16)
-	168 Er 170 Er	167,932	in Nom	0(+) 0(+)	27,1 14,9	7,4(4) 9,6(5)	0	6,9(7) 11,6(1,2)	0 0	6,9(7) 11,6(1,2)	2,74(8) 5,8(3)
69	Tm	168,934	9,3	1/2(+)	100	7,07(3)	0,9(3)	6,28(5)	0,10(7)	6,38(9)	100,(2)

For	tsetzun	g T 8.08									
Ζ	EI	Ar	Q in g/cm ³	I(p)	c in %	bc in fin	b _i in fin	$\sigma_{\rm c}$ in barn	σ_i in barn	σ _s in barn	σ _a in barn
70	Yb 168 Yb	174,04 167,934	7,0	(+)0	0,14	12,43(3) -4,07(2) -0.62(1)i	0	19,42(9) 2,13(2)	4,0(2) 0	23,4(2) 2,13(2)	34,8(8) 2230,(40)
1	170Yb	169,935		(+)0	3,06	6,77(10)	0	5,8(2)	0	5,8(2)	11,4(1,0)
19	172 Yb	171.936	0.30	$(-)^{7/1}$	21.9	9.43(10)	(/1)6C°C-	11.2(2)	3,9(2) 0	(5)0,01	(2,2)0,84
177	9X [21]	172,938		5/2(-)	16,1	9,56(7)	-5,3(2)	11,5(2)	3,5(3)	15,0(4)	17,1(1,3)
12.1	176Yb	173,939		(+)0	31,8 12,7	19,3(1) 8,72(10)	00	46,8(5) 9,6(2)	00	46,8(5) 9,6(2)	69,4(5,0) 2,85(5)
71	Lu 1751	174,967	9,84	(+)(1)	97 39	7,21(3)	ALIC CT	6,53(5)	0,7(4)	7,2(4)	74.(2)
#	176 Lu	175,943		(-)2	2,61	6,1(1) -0.57(1)i	±3,0(4) ±3,0(1)	4,7(2)	1,2(3)	5,9(4)	2065,(35)
72	Hf	178,49	13,36			7,77(14)		7,6(3)	2,6(5)	10,2(4)	104,1(5)
n S	176Hf	175.942		(+)0	0,2 5,2	10,9(1,1) 6.61(18)	0 0	15,(3,)	00	15,(3,)	561,(35)
	17811F	176,943		7/2(-)	18,6	0,8(1,0)E	±0,9(1,3)	0,1(2)	0,1(3)	0,2(2)	373,(10)
(III)	JH _{6/1}	178,946		9/2(+)	13,7	7,46(16)	0 ±1,06(8)	4,4(3) 7.0(3)	0 0.14(2)	4,4(3) 7,1(3)	84,(4) 41,(3)
1	3H081	179,947		(+)0	35,2	13,2(3)	0	21,9(1,0)	0	21,9(1,0)	13,04(7)
73	Ta 180Ta	180,945 179,948	16,6	(-)6	0.012	6,91(7) 7.(2.)E	Span Span	6,00(12)	0,01(17) 0 5(5)F	6,01(12) 7 (4)	20,6(5) 563 (60)
	181 Ta	180,948		7/2(+)	886,968	6,91(7)	-0,29(3)	6,00(12)	0,011(2)	6,01(12)	20,5(5)
74	W	183,85	19,27			4,86(2)	0 00 1 W 2 1	2,97(2)	1,63(6)	4,60(6)	18,3(2)
CTI S	182 W	181,948		(+)0	26.3	5,(3,)E 6,97(4)	0 0	3,(4,) 6,10(7)	00	3,(4,) 6,10(7)	30,(20) 20.7(5)
000	183 W	182,95		1/2(-)	14,3	6,53(4)	-1.000.1-	5,36(7)	0,3(3)E	5,7(3)	10,1(3)
RY I	W 101	185,954		(+)0	30.7 28,6	-0,72(4)	00	7,03(11) 0,065(7)	00	7,03(11) 0,065(7)	1,7(1) 37,9(6)
75	Re	186,207	21,04		07 10	9,2(2)	and	10,6(5)	(9)6(0	11,5(3)	89,7(1,0)
122	187 Re	186,956		5/2(+)	57,40 62,60	9,3(3)	±2,0(1,8) ±2,8(1,1)	10,2(7) 10,9(7)	0,5(9) 1,0(8)	10,7(6) 11,9(4)	112.(2) 76.4(1.0)
76	Os	190,2	22,48	-	erd.	10,7(2)		14,4(5)	0,3(8)	14,7(6)	16,0(4)
3TV	1860s	183,953	22.24	(+)0	0,02	10,(2,)E	00	13,(5,)	0.0	13,(5,)	3000,(150)
19	187 OS	186,956		1/2(-)	1,6	10.(2.)E	0.0	13.(5,)	0.3(3)E	17,(2,)	320.(10)
84	188 OS	187,956	Sana a	(+)0	13,3	7,6(3)	0	7,3(6)	0	7,3(6)	4,7(5)
	sO	189,959		$\frac{3}{2}(-)$	26,4	10,/(3) 11,0(3)	0	14,4(8) 15,2(8)	0,5(5)E 0	14,9(9) 15.2(8)	25,(4) 13,1(3)
							-	1-1-6-6		1.1	Interes

T 8.08 s.oo. s.oo. s.oo. s.oo. solated and rob antibidoenagid bru tubudit 553

For	tsetzur	1g T 8.08									
Z	Elos	Ar	g in g/cm ³	I(b)	c in %	b _c in fm	b _i in fm	$\sigma_{\rm c}$ in barn	σ _i in barn	$\sigma_{\rm s}$ in barn	σ_{a} in barn
	¹⁹² Os	191,961		(+)0	41,0	11,5(4)	0	16,6(1,2)	0	16,6(1,2)	2,0(1)
17	Ir 191 Ir 193 Ir	192,22 190,961 192,963	22,42	3/2(+) 3/2(+)	37,3 62,7	10,6(3)	0.000	14,1(8)	0,(3,)	14,(3,)	425,(2,) 954,(10,) 111,(5,)
78	Pt 190m	195,08	21,45	~ ~ ~ ~	100	9,60(1)		11,58(2)	0,13(11)	11,71(11)	10,3(3)
-	192Pt	191,961		(+)0	0.79	9.9(5)	00	10,(2,)	00	10,(2,)	152,(4,)
10	194 Pt	193,963	64	(+)0	32,9	10,55(8)	0	14,0(2)	0	14,0(2)	1,44(19)
	196 Pt	195,965		$(-)^{7/1}$	25,3 7.7	8,85(11) 9,89(8) 7 8(1)	000000000000000000000000000000000000000	9,8(2) 12,3(2) 7,6(3)	0,13(4)	9,9(2) 12,3(2)	27,5(1,2) 0,72(4)
79	Au	196,967	19,29	3/2(+)	100	7,63(6)	-1.84(10)	7.32(12)	0.43(5)	7.75(13)	98.65(9)
80	HgHgHg	200,59	13,55	(+)0	0,2	12,692(15) 30,3(1,0)	0	20,24(5)	6,6(1) 0	26,8(1) 115.(8.)	372,3(4,0) 3080.(180.)
	BH861	197,967		0(+)	10,1	16 9(4)	0 +15 5(8)	10.75	0 20/37	10199	2,0(3)
	200Hg	199,968		(+)0	23,1	(+)<'01	(o)c*c1+	(*7)*00	(*c)*0c 0	00'(7')	(84) (60, 160,
10 18	²⁰¹ Hg ²⁰² Hg ²⁰⁴ Hg	200,97 201,971 203,973	3.2	3/2(-) 0(+) 0(+)	13,2 29,6 6,8	100000	0		0	89:	7,8(2,0) 4,89(5) 0,43(10)
81	ТІ 203 П 205 П	204,383 202,973 204,974	11,85	1/2(+) 1/2(+)	29,524 70,476	8,776(5) 6,99(16) 9,52(7)	1,06(14) -0,242(17)	9,678(11) 6,14(28) 11,39(17)	0,21(15) 0,14(4) 0,007(1)	9,89(15) 6,28(28) 11,40(17)	3,43(6) 11,4(2) 0,104(17)
82	Pb 204 Pb 206 Pb 207 Pb 208 Pb	207,2 203,97 205,974 206,976 207,977	11,34	0(+) 0(+) 1/2(-) 0(+)	1,4 24,1 22,1 52,4	9,405(3) 9,90(10) 9,22(5) 9,28(4) 9,50(2)	0 0 0,14(6) 0	$11,115(7) \\12,3(2) \\10,68(12) \\10,82(9) \\11,34(5)$	0,0030(7) 0 0,002(2) 0	11,118(7) 12,3(2) 10,68(12) 10,82(9) 11,34(5)	0,171(2) 0,65(7) 0,0300(8) 0,699(10) 0,00048(3)
83	Bi	208,98	9,80	9/2(-)	100	8,532(2)	0.259(15)	9.148(4)	0.0084(10)	9.156(4)	0.0338(7)
84	Po	No.	6.0		202						
86	Rn Fr				24.0	調中	0000	and the second	Parts -	Call of the second	- Andrew
88	226Ra	226,025	in Some,	(+)0	(1,60.10 ³ a)	10,0(1,0)	0	13,(3.)	0	13.(3.)	12,8(1.5)
68	Ac	100.016	9	(0)	6 18.9 c	Nº 9.6(3)	N 0 -	st1.60,3)	-0.	(211911 a)	
60	μ	232,038	11,7	(+)0	100	10,31(3)	0	13,36(8)	0 0 0 0 0	13,36(8)	7,37(6)

554

Struktur und Eigenschaften der Materie

8.09 Teilchenausbeuten beim Ionenbeschuß von Festkörpern – Particle yields from ion-bombarded solids (H. Oechsner)

8.09a Gesamtausbeuten Y_{tot} (Atome/Ion) bei der Festkörperzerstäubung durch Ionenbeschuß (Sputtering) – Total sputtering yields Y_{tot} of solids (atoms/ion)

Target	He ⁺	Ne ⁺	Ar ⁺	Kr ⁺	Xe ⁺	Target	He ⁺	Ne ⁺	Ar ⁺	Kr ⁺	Xe ⁺
Be	0,35	0,8	1,1	0,8	0,7	Nb		1999	1,0	1,3	1,8
C (Graphit)	0,08	1.18	0,6	10	02 14,	Mo	0,05	0,5	1,2	1.4	1,6
Mg	snille	A Kortsky	3,3	97 1.11	Se nutr	Pd	elerone	erre E	3,0	Logae	5.10
Al	in the	1,1	1,9	1,5	1,2	Ag	1,8	2,4	4,7	4.7	5,5
Si	0,1		0,7	Leanne	1,0	Cd	salling	manulos	11,2		
Ti	0,06	1.2.1.1.1.1	1,1	a sector 15	an anna	In	1 contraction of the		5,0		
v	0,06		0,9			Ta	0,015	0,4	0,9	021	
Cr	E STREET	COLUMN	1,7	wise 1	1 Cella	W	0,02	0,5	1,1	1,3	1,8
Fe	0,1	0,8	1,5	1,6	1,8	Pt	0,08	0,9	2,0	2,3	2,5
Ni	0,2	1,3	2,1	1,9	2,2	Au	0,15	1,5	4,0	3,8	4.2
Cu	0,7	2,7	3,6	3,6	3,4	Pb	1,5		4,2		
Ge	6111	School !	1,5	A.St.		U	0,02	1.500	1,1		pogen T.
Zr	0,04	120	1,0	diffe	The	1110	St sel	A NLT	Stell in	Dunheurit	Who w

*Y*_{tot} für elementare polykristalline Targets Senkrechter Beschuß mit Edelgasionen von 1 keV

Literatur: Andersen, H.H.; Bay, H.L. (1981): Sputtering Yield Measurements. In: Behrisch, R. (ed.): Sputtering by Particle Bombardment I. Topics in Applied Physics vol. 47. Berlin, Heidelberg, New York: Springer. Matsunami, N. u.a. (1983): Energy Dependence of the Yields of Ion-induced Sputtering of Monoatomic Solids. IPPJ AM-32, Inst. Plasma Physics, Nagoya

Y_{tot} für Oxide

Senkrechter Beschuß mit Ar⁺-Ionen von 1 keV Senkrechter Beschuß mit Kr⁺-Ionen von 10 keV (nach Kelly u. Lam)¹)

Oxid	Y _{tot} (Atome/Ion)						
Al ₂ O ₃	0,2	MgO	1,8	V ₂ O ₅	12,7	SnO ₂	15,3
SiO ₂	1,1	Al ₂ O ₃	1,6	ZrO ₂	2,8	Ta ₂ O ₅	2,5
Nb ₂ O ₅	1,4	SiO ₂	4,2	Nb ₂ O ₅	3,4	WO ₃	9,2
Ta ₂ O ₅	1,7	TiO ₂	1,9	MoO ₃	9,6	UO ₂	3,8

¹) Kelly, R; Lam, N.Q. (1973): The Sputtering of Oxides Part I: A Survey of the Experimental Results. Radiation Effects **19**, 39–47.

Literatur: Betz, G.; Wehner, G.K. (1983): Sputtering of Multicomponent Materials. In: Behrisch, R. (ed.): Sputtering by Particle Bombardment II. Topics in Applied Physics vol. 52. Berlin, Heidelberg, New York, Tokyo: Springer.

8.09b Sekundärionenausbeuten Y_{Me^+} (Me⁺-Ionen/Primärion) an reinen und oxidierten Metalloberflächen beim Beschuß mit Ar⁺-Ionen von 2,5 keV unter 70° gegen die Flächennormale (nach Benninghoven)¹) – Secondary ion yields Y_{Me^+} (Me⁺ ions/primary ion) at clean and at oxidized metal surfaces under bombardment with 2,5 keV Ar⁺-ions under 70° with respect to the normal (of the surface) (H. Oechsner)

¹) Benninghoven, A. (1975): Developments in Secondary Ion Mass Spectroscopy and Applications to Surface Studies. Surface Sci. 53, 596-625.

T 8.08, 8.09, 8.09n, 8.09

Target	saubere Oberfläche	oxidbedeckte Oberfläche	Target	saubere Oberfläche	oxidbedeckte Oberfläche	Target	saubere Oberfläche	oxidbedeckte Oberfläche
Mg	0,01	0,9	Mn	0,0006	0,3	Nb	0,0006	0,05
Al	0,007	0,7	Fe	0,0015	0,35	Mo	0,00065	0,4
Si	0,0084	0,58	Ni	0,0006	0,045	Ba	0,0002	0,03
Ti	0,0013	0,4	Cu	0,0003	0,07	Та	0,00007	0,02
V	0,001	0,3	Ge	0,0044	0,02	W	0,00009	0,035
Cr	0,0012	1,2	Sr	0,0002	0,16	LAC.	Het No	Target

Fortsetzung T 8.09b

8.10 Ioneninduzierte Elektronenausbeuten γ für reine polykristalline Targets bei senkrechtem Beschuß mit Ar⁺-Ionen von 1 keV – Ion induced electrons yields from clean polycrystalline targets under normal bombardment with Ar⁺-ions of 1 keV (H. Oechsner)

Target	Mg	Al	Si	Ti	V	Cr	Fe	Ni	Cu
γ (Elektronen/Ion)	0,15	0,09	0,07	0,15	0,16	0,11	0,08	0,08	0,08
Target	Zr	Nb	Мо	Pd	Ag	Та	W	Au	al al
γ (Elektronen/Ion)	0,14	0,14	0,11	0,08	0,09	0,12	0,10	0,06	813

Literatur: Oechsner, H. (1978): Electron Yields from Clean Polycristalline Metal Surfaces by Noble-Gas-Ion Bombardment at Energies around 1 keV. Phys. Rev. B 17, 1052–1056.

8.11 Elektronenaustrittsarbeit Φ von verschiedenen Elementen (polykristalline Proben) in eV (nach Michaelson¹) und Hölzl u. Schulte)²) – Electronic work function Φ of different elements (polycrystalline samples) in eV (H. Jahrreiss)

Element	Φ	Element	Φ	Element	Φ	Element	Φ
Ag	4,26	Eu	2,5	Nb	4,3	Sr	2,59
AĬ	4,28	Fe	4,5	Nd	3,2	Ta	4,25
As	3,75	Ga	4,35	Ni	5,15	Tb	3,0
Au	5,1	Gd	3,1	Os	4,83	Tc	4,88
В	4,45	Ge	5,0	Pb	4,25	Te	4,95
Ba	2,52	Hf	3,9	Pd	5,55	Th	3,4
Be	4,98	Hg	4,49	Pt	5,65	Ti	4,33
Bi	4,34	In	4,12	Rb	2,26	TI	3,84
C	5,0	Ir	5,27	Re	4,72	U	3,63
Ca	2,87	K	2,30	Rh	4,98	V	4,3
Cd	4,08	La	3,5	Ru	4,71	W	4,55
Ce	2,9	Li	2,93	Sb	4,55	Y	3,1
Со	5,0	Lu	3,3	Sc	3,5	Zn	4,33
Cr	4,5	Mg	3,66	Se	5,9	Zr	4,05
Cs	1,95	Mn	4,1	Si	4,85	lierten Meta	the second
Cu	4,65	Mo	4,6	Sm	2,7	th nates 10	
Er	2,97	Na	2,75	Sn	4,42	ields K.E. B	

Michaelson, H.B. (1977): The work function of the elements and its periodicity. J. Appl. Phys. 48, 4721–4733
 Hölzl, J.; Schulte, F.K. (1979): Work functions of metals. Berlin, Heidelberg, New York: Springer. Springer Tracts in Modern Physics, Vol. 85, 1–150 (vgl. pp. 85–95)

T 8.09b, 8.10, 8.11, 8.12, 8.13, 8.14

Ele- ment	Netze (100)	bene (h (110)	nkl) (111)	(112)	Ele- ment	Netze (100)	bene (h (110)	ukl) (111)	(112)	Ele- ment	Netze (100)	bene (h (110)	nkl) (111)	(112)
Ag Al Au Cs Cu Fe Ir	4,64 4,41 5,47 2,14 4,59 4,67 5,67	4,52 4,06 5,37 4,48 5,42	4,74 4,24 5,31 4,98 4,81 5,76	4,53	K Li Mo Na Nb Ni Pd	2,30 2,9 4,53 2,75 4,02 5,22	4,95 4,87 5,04	4,55 4,36 5,35 5,6	4,36 4,63	Pt Sb Ta U W	4,7 4,15 3,73 4,63	4,80 3,90 5,25	5,7 4,00 4,47	3 H3 5 H3 5 H3 7 L1 9 Ba 10 B

Literatur s. Tab. T 8.11

8.13 Elektronenaustrittsarbeiten fremdstoffbedeckter und oxidierter Metalle in eV (nach Herrmannu. Wagener¹) und Kluge²)) – Electronic work function of impurity-covered and of oxidized metals in eV (H. Jahrreiss)

W - Ba W - O - Ba	1,56 bis 2,07	W – Th Mo – Th	2,86 2,58	SrO Ni – SrO	1,4
W - Cs	1,38 bis 1,70	Ta - Th	2,52 4,21	W - SrO	1,1
W - O - Cs	1,44	$Pt - H_2$		BaO + SrO	0,93
W - O	6,42	BaO	1,1	$\frac{\text{ThO}_2}{\text{W}-\text{ThO}_2}$	2,5
Pt - O	6,55	Ni – BaO	1,27		1,6
Ni – O	4,34	W – BaO	1,34	-445.746	22 164 6

¹) Herrmann, G.; Wagener, S. (1948): Die Oxydkathode, Bd. I. Leipzig: Barth, p. 88 f.

²) Kluge, W. (1959): Glühemission und Austrittsarbeit. In: Landolt-Börnstein: Zahlenwerte und Funktionen, Band II/6, 909-928. Berlin, Göttingen, Heidelberg: Springer p. 920 f.

Die angegebenen Werte gelten für optimale Bedingungen hinsichtlich Bedeckungsgrad sowie Herstellung und Formierung für die jeweilige Kombination von Unterlage und Bedeckung. Zu den davon abweichenden Austrittsarbeiten, die sich insbesondere bei dünnsten Bedeckungen im Bereich weniger Monolagen und bei verschiedenen Temperaturen ergeben, muß auf die umfangreiche Spezialliteratur verwiesen werden.

8.14 Kernmagnetische Momente und Spinresonanzdaten – Nuclear magnetic moments and spin resonance data (A. Hofstaetter)

 μ magnetisches Kerndipolmoment; μ_N Kernmagneton; Q elektrisches Kernquadrupolmoment; ν_0 magnetische Kernresonanzfrequenz in einem Magnetfeld der Flußdichte 1 T; $(S/S_{^{(H)}})_{H_0=const}$ bzw. $(S/S_{^{(H)}})_{\nu_0=const}$ Kernresonanzabsorption relativ zur Protonenresonanzabsorption im gleichen Magnetfeld bzw. bei gleicher Resonanzfrequenz (bei gleichen Kernanzahlen, gleicher Linienform, gleichen Relaxationszeiten, bei langsamem, adiabatischem Resonanzdurchgang und optimaler Wechselfeldstärke).

Elementsymbol mit r: radioaktiver Kern, Symbol mit *: isomerer Kern, gekennzeichnet durch Anregungsenergie (in Klammern; Angabe (0)_x: relative Lage der Isomere unbekannt). Alle magnetischen Dipolmomente ohne Index a sind an den angegebenen Wert für ¹H angeschlossen und nach Feiock u. Johnson (1969): Phys. Rev. **187**, 39, diamagnetisch korrigiert (siehe auch Lederer u. Shirley (1978): Table of Isotopes, 7th ed. New York: Wiley Interscience). Werte mit Index a und Quadrupolmomente ohne Index sind angegeben wie von den Autoren veröffentlicht, im allgemeinen, weil deren Verfahrensweise bei der Analyse nicht erkennbar ist. Quadrupolmomente mit Index s sind Sternheimer-korrigiert, solche mit Index u unkorrigiert; Werte mit Index t sind wahre Quadrupolmomente, da sie aus Messung direkter Kernwechselwirkung stammen.

In den Fällen, in denen mehrere, über die angegebenen Fehlergrenzen hinaus verschiedene Momente in der Literatur angegeben sind, ist meist der neueste Wert, in besonderen Fällen der am genauesten gemessene Wert angegeben.

Nicht sicher bekannte Vorzeichen und Werte sind in Klammern gesetzt.

Nicht aufgenommen wurden gg-Kerne, Kerne mit Lebensdauern unter 1 s und magnetische Oktupolmomente.

Kern	Kern- spin	$\mu/\mu_{\rm N}$	$Q \cdot 10^{24}$ cm ²	ν ₀ MHz	$(S/S_{^{1}\mathrm{H}})_{H_{0}=\mathrm{const}}$	$(S/S_{^{1}\mathrm{H}})_{\nu_{0}=\mathrm{cons}}$
Onr	1/2	-1.91304211a	10,9008	29,1644551	0.321	0.685
1 H	1/2	+2,7928456	1 (Dat) 98	42,577118	1,000	1,000
2 H	1	+0.8574376	+0.002875s	6.5358468	0.00965	0.409
3 H r	1/2	+2.978960		45,414445	1.214	1.067
3 He	1/2	-2.127624a	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	32,43577	0.442	0,762
5 Li	1	-0.8220467	-0.000644s	6.2660785	0.00850	0.392
7 Li	3/2	+3,256424	-0.041s	16,54813	0,294	1,943
9 Be	3/2	-1,17749	+0.053s	5,98364	0,0139	0,703
10 B	3	+1.80065	+0.08472s	4,57517	0.0199	1.719
11 B	3/2	+2.688637	+0.04065s	13,66282	0,165	1,604
11 Cr	3/2	-0.964	0.03426s	4,899	0.00762	0.575
13 C	1/2	+0.702411	ne largels w	10,70830	0.0159	0.252
13 N r	1/2	0.32224		4,91257	0.00154	0.115
14 N	1	+0.4037607	+0.0156	3.0776795	0.00101	0.193
15 N	1/2	-0.2831892	10,0100	4.3172383	0.00104	0,101
15 O r	1/2	0.7189	Jund-JCL is g	10.960	0.0171	0.257
170	5/2	-1.89379	-0.02578s	5 77419	0.0291	1 582
17 F r	5/2	+4 7223	0.10s	14 398	0.451	3.945
10 F	1/2	+2 628866	0,103	40 07724	0.834	0.941
20 F r	2	+2,020000	0.070s	7 9789	0.0527	1 499
10 Ner	1/2	-1 887	0,0703	28 77	0.308	0.676
21 Ne	3/2	-0.661796	±0.1029¢	3 363041	0.00246	0 395
22 Nor	5/2	-1.08	+0,10233	3 20	0.00540	0,002
21 Mar	2/2	12 28620	0.060a	12 1264	0,00540	1 424
27 Nor	3/2	+1 746	-0,0005	12,1204	0,110	1,424
22 Na 1	3/2	+2 217654	±0.101s	11 26943	0.0927	1 323
24 Nar	1	+1,6003	+0,1015	3 2211	0,0927	2 017
25 Nar	5/2	+1,0705	±0.23¢	11 23	0.214	3.077
25 Ma	5/2	-0.85545	+0,235	2 60828	0,00268	0.715
25 Mlr	5/2	2 6455	+0,22	11 115	0,00208	3.046
27 41	5/2	13 641504	10.140c	11,113	0,203	3,040
27 AL	3/2	+3,041304	+0,1405	7 001	0,207	2,665
0 6:	1/2	-2,791	0,17	9 46543	0,0739	0,100
29 SI	1/2	1 2240	1.52	19 926	0.0865	0,133
29 F 1 21 D	1/2	1,2349	10.621.1	17 25122	0,0805	0,442
	1/2	+1,13100	Abruessounds	1 0220	2.46 10-4	0,405
21 5 -	1/2	0.48703	Hofsisetter.	7 43853	0,00533	0,120
22 6	3/2	+0.643821	-0.11	3 271608	0.00227	0.384
15 S r	3/2	$(\pm)1.00$	$\pm 0.045s$	5.082	0.00850	0,507
15 CI	3/2	+0.8218736	-0.08249s	4 1765060	0.00472	0.490
6 CLr	2	+1.28547	-0,082495 -0.0180s	4,1705000	0.0122	0.921
	3/2	+0.6841230	-0.06493s	3 47650032	0.00272	0,408
R Clr	2	2.05	-0,004953	7.81	0.0494	1 468
S Arr	3/2	+0.633	isomenic Korn y	3 217	0.00216	0.378
7 Arr	3/2	+0.055	min. 2855 magni	4.83	0.00729	0.567
Q Arr	7/2	-13	dok uE6hnso	2.8	0.00617	1 396
7Kr	3/2	+0.20321	r of Lengers, M	1.03265	7.13.10-5	0.121
SKr	3	+1 3737	movieller Michael	3 4904	0.00882	1 312
OK	3/2	+0.3914658	+0.049e	1 9893074	5 10 . 10-4	0.234
IOK F	4	-1 298099	-0.0616	2 473701	0.00523	1 549
11 K	3/2	+0.2148690	±0.060s	1,0010020	8 43 , 10-5	0.128
12Kr	2	-1 1425	+0,0005	4 3544	0.00856	0.818
13 K r	3/2	0.163	Sector Internet In Sector Internet	0.828	3.68, 10-5	0.0973
45 K r	3/2	0.1734	al mar an open	0.8812	4 43 . 10-5	0.103
15 KI	5/2	0,1734	uniorn geseizt,	0,0012	4,45.10	0,105

T 8.14

Kern Kern- spin		$\mu/\mu_{\rm N}$	$Q \cdot 10^{24}$ cm ²	ν ₀ MHz	$(S/S_{H})_{H_0=\text{const}}$	$(S/S_{1_{\mathrm{H}}})_{\nu_0=\mathrm{const}}$	
43 Ca	7/2	-1,317642	-0,06u	2,869649	0,00643	1,415	
45 Car	7/2	-1,3282	+0,05u	2,8926	0,00659	1,427	
43 Sc r	7/2	+4,62	-0.26u	10,1	0,277	4,963	
44 Sc r	2	+2.56	+0.10u	9.76	0.0963	1,833	
44 Sc *	6	+3.88	-0.19u	4.93	0.0869	6,483	
(271 keV)		in the second second	2013		ZETA RALES CO		
45 Sc	7/2	+4 756483	-0.2211	10 35899	0.302	5,109	
45 Sc r	1/2	+3.03	+0.119	5 77	0.0665	3.616	
40 SCT	7/2	+5.34	-0.220	11.6	0.428	5,736	
47 SC 1	7/2	0.095	0.015	0.207	2 41 . 10-6	0.102	
45 TT	5/2	-0.78848	±0.290	2 40409	0.00210	0.659	
4/ 11 40 T:	7/2	1 10/17	+0,250	2,40409	0.00270	1 186	
49 11	1/2	-1,10417	+0,24u	2,40474	0,00578	1 045	
48 V r	4	1,05	Pole A	0.74	0.251	4 802	
49 V r	1/2	4,4/	0.07.	9,14	0,251	5 502	
50 V	6	+3,34745	0,070	4,25267	0,0558	5,593	
51 V	1/2	+5,1514	-0,052u	11,219	0,384	5,555	
49 Cr r	5/2	0,476	Nation's	1,451	4,62 · 10	0,398	
51 Cr r	7/2	(-)0,934		2,034	0,00229	1,003	
53 Cr	3/2	-0,47454	-0,0285s	2,41146	9,08 · 10-4	0,283	
51 Mn r	5/2	3,568	0,50	10,88	0,195	2,981	
52 Mn r	6	+3,0631	+0,60	3,8914	0,0428	5,118	
52 Mn * (378 keV)	2	0,0076	612,6	0,0290	$2,52 \cdot 10^{-9}$	0,00544	
53 Mn r	7/2	5,024	65,9	10,94	0,356	5,397	
54 Mn r	3	+3,2818	+0,40	8,3385	0,120	3,134	
55 Mn	5/2	+3,468716	+0,40	10,57616	0,179	2,898	
56 Mn r	3	+3,2266	0,6357	8,1983	0,114	3,081	
57 Fe	1/2	+0,09062293	10,4	1,38155264	$3,42 \cdot 10^{-5}$	0,0324	
59 Fe r	3/2	0,29	4,223	1,47	$2,07 \cdot 10^{-4}$	0,173	
55 Cor	7/2	+4,822	2,5054	10,50	0,315	5,180	
56 Cor	4	3,830		7,2986	0,134	4,571	
57 Cor	7/2	+4,719	+0,52u	10,28	0,295	5,069	
58 Cor	2	+4.044	+0.22u	15.41	0,380	2,896	
59 Co	7/2	+4,627	+0,42s	10.08	0,278	4,970	
60 Cor	5	+3.799	+0.44u	5,792	0,101	5,441	
60 Co *	2	+4.40	+0.3	16.77	0,489	3,151	
(59 keV)	- n -	01SZ-0113065X5	082,1	1.9923854	- 806,0,02 00	C (0.051-92	
57 Nir	3/2	0.88	=12,08	4.47	0,00579	0,525	
61 Ni	3/2	-0.75002	+0.162s	3,81137	0.00359	0,448	
65 Nir	5/2	0.69	1.2888	2.10	0.00141	0.576	
60 Cu r	2	+1 219	1.1165,852442	4.646	0.0104	0.873	
61 Cur	3/2	+2.14	10,33	10.9	0.0833	1.277	
62 Cur	1	-0.380		2 8966	8.40 - 10-4	0.181	
62 Cu 1	2/2	12 2264	-0.2098	11 314	0.0938	1 329	
65 Cu	5/2	0.217	0,2075	1.654	1 56 . 10-4	0.104	
64 Cur	2/2	-0,217	_0.195e	12 121	0.115	1 423	
66 Cu =	5/2	-0.282	0,1955	2 150	3 43 . 10-4	0.135	
62 7n n	2/2	-0.28164	+0.2911	1 43121	1.90.10-4	0.168	
03 Zn r	5/2	-0,28104	-0.023	2 34460	0.00195	0.642	
63 Zn r	5/2	+0,7090	+0.1500	2,5711864	0,00195	0,042	
67 Zn	5/2	+0,8700822	+0,1500	0.4047	0,00288	1,104	
67 Ga r	3/2	+1,8507	+0,1958	9,4047	0,0539	1,104	
68 Ga r	1	0,01175	0,02778	0,08956	2,48 . 10 .	0,00561	
69 Ga	3/2	+2,01659	+0,1685	10,2477	0,0697	1,203	
71 Ga	3/2	+2,56227	+0,1065	13,0207	0,143	1,529	
72 Ga r	3	-0,13224	+0,52s	0,33600	7,86 · 10-6	0,126	

Fortsetzung T 8.14

Kern	Kern Kern- spin		$Q \cdot 10^{24}$ cm ²	ν ₀ MHz	$(S/S_{^{1}\mathrm{H}})_{\mathcal{H}_{0}=\mathrm{const}}$	$(S/S_{^{1}\mathrm{H}})_{\nu_{0}=\mathrm{const}}$
69 Ge r	5/2	0,735	0,024s	2.241	0,00170	0.614
71 Ge r	1/2	+0.547	1.8926	8.339	0.00751	0.196
73 Ge	9/2	-0.8794669	-0.1730	1 4897258	0.00141	1.155
75 Ge r	1/2	+0.510	0,17.54	7 7750	0.00609	0.183
70 As r	4	21	10.5	40	0.0221	2 506
71 Asr	5/2	(+)1 6735	an none-sta-	5 1025	0,0221	1 308
72 Acr	2	(-)2 1578	London A-1	8 2240	0,0201	1,598
74 Aor	2	(-)2,1576	A LOUIS	6,2240	0,0377	1,545
74 AS F	2/2	-1,597	10.20.	0,087	0,0254	1,144
75 As	3/2	+1,43947	+0,290	7,51494	0,0254	0,839
70 AS F	5/2	-0,900	1100	3,455	0,00427	0,649
75 Se F	5/2	0,07	+1,00	2,04	0,00129	0,560
77 Se	1/2	+0,534270		8,1449819	0,00700	0,191
79 Se r	1/2	-1,018	+0,80	2,217	0,00297	1,094
76 Br r	1	0,5482	0,27s	4,1787	0,00252	0,262
79 Br	3/2	+2,106399	+0,293u	10,70406	0,0795	1,257 02
80 Br r	1	0,5140	0,199s	3,91798	0,00208	0,245
80 Br *	5	+1,3177	+0,76s	2,0088	0,00420	1,887
(86 keV)	2 9	1500,023	-0,060,0	14,398		51 GHP.C 17/
81 Br	3/2	+2,270560	+0,27s	11,538280	0,0995	1,355
82 Br r	5	+1,6270	+0,76s	2,48037	0,00791	2,330
83 Kr	9/2	-0,970669	+0,270u	1,644213	0,00190	1,274
85 Kr r	9/2	1,005	+0,45u	1,702	0,00211	1,319
77 Rb r	3/2	0,652		3,313	0,00236	0,389
78 Rb *	4	2,56	-0,0480,01	4,88	0,0401	3,055
(103 keV)		05165	8.3385	198,314	1814232818	54 Miles 1
79 Rb r	5/2	3,36	10,576.05	10,2	0,163	2,807
80 Rb r	1	-0,0834a	8,1983	0,6357	$8,88 \cdot 10^{-6}$	0,0398
81 Rb r	3/2	+2,05	1,481,581	10,4	0,0732	1,223
82 Rb r	21 -01	+0,554a	-0.220,1	4,223	0,00260	0,264
82 Rb *	5	+1,6434	10,50	2,5054	0,00815	2,354
$(\approx 100 \text{ keV})$	2	4254-0304 TO D	-0.9005	0.00009	02802207	36 68 45 4
83 Rb r	5/2	+1,43	+0,27s	4,36	0,0125	1,195
84 Rb r	2	-1,297	+0,005s	4,943	0,0125	0,929
85 Rb	5/2	+1,3533505	+0,274s	4,1263838	0,0106	1,131
86 Rb r	2	-1,6920	+0,20s	6,44866	0,0278	1,212
87 Rb r	3/2	+2,751816	+0,130s	13,98387	0,177	1,642
88 Rb r	2	0,508		1,936	7,52 · 10 ⁻⁴	0,364
89 Rb r	3/2	2,377	0,16s	12,08	0,114	1,419
91 Rb r	3/2	2,177	0,14s	11,06	0,0877	1,299
93 Rb r	5/2	1,400	0,27s	4,2686	0,0118	1,170
87 Sr	9/2	-1,093602	+0,36u	1,852448	0,00272	1,436
87 Y *	9/2	6,10a	0.066998	10,33	0,472	8,009
(381 keV)	1-01	20151	2.8966	7.81	08700494	1.460 ca
89 Y	1/2	-0,1374153	ALC IL	2,0949055	$1,19 \cdot 10^{-4}$	0,0492
90 Y r	2	-1,630	-0,155u	6,2124	0,0249	1,167
91 Y r	1/2	0,1641	12121	2,5017	$2,03 \cdot 10^{-4}$	0,0588
91 Zr	5/2	-1,30362	021 0	3,97475	0,00949	1,089
90 Nb r	8	4,941	TOTAL DUNING	4,708	0,130	10,615
92 Nb *	2	6,114a	ADGRED C	23,30	1,311	4,378
(135 keV)		E00000000	3.670.070	DO2478201	CROBURGODS71	1.5 1.5400 TA
93 Nb	9/2	+6,1705	-0,36u	10,452	0,488	8,101
95 Nb r	9/2	6,123	0.08956	10,37	0,477	8,039
97 Nb r	9/2	7,3	10 2422	12	0,808	9,584
93 Mo *	21/2	(+)9,21	13 0207	6,69	0,623	25,282
(2245 keV)	2 1501	- Ball5#7900	0,33600	856364183	A [100)17224	72 CERT 1 3

Contract of a

T 8.14

Kern	Kern- spin	$\mu/\mu_{\rm N}$	$Q \cdot 10^{24}$ cm ²	ν ₀ MHz	$(S/S_{1}H)_{H_{0}=\text{const}}$	$(S/S_{^{1}\mathrm{H}})_{\nu_{0}=\mathrm{const}}$
95 Mo	5/2	-0,9142	-0,019u	2,7874	0,00327	0,764
97 Mo	5/2	-0,9335	-0,102u	2,8463	0,00349	0,780
93 Tc r	9/2	6,15	and a state	10,4	0,483	8,074
94 Tc r	7	5,20	100	5,662	0,176	9,930
95 Tc r	9/2	9,058	- sonar 1	15.34	1.544	11,892
96 Tc r	7	+5.37	and the second second	5.85	0.193	10.255
99 Tc r	9/2	+5.6847	(+)0.34	9.6293	0.382	7,463
97 Rur	5/2	0.687	() / - ,	2.095	0.00139	0.574
99 Ru	5/2	-0.6413	+0.076	1.9553	0.00113	0.536
101 Ru	5/2	-0.7188	+0.44u	2 1916	0.00159	0.601
103 Ru r	5/2	0.67	10,114	2.04	0.00129	0.560
101 Rh *	9/2	+5.51	CULTURE 1	033	0.348	7 234
(157 koV)	1/2	10,01		1,55	0,540	1,234
102 Ph r	(6)	4.11	and the second second	(5.22)	(0.103)	(6.868)
102 RH 1	(0)	0.45	1	(1,72)	(5, 23, 10-4)	(0,308)
(<70 keV)	(2)	0,45	D. Theres.	(1,72)	(5,25.10)	(0,322)
(0 KCV)</td <td>1/2</td> <td>_0.08840</td> <td>1 8836.2</td> <td>1 347664</td> <td>2 17 10-5</td> <td>0.0317</td>	1/2	_0.08840	1 8836.2	1 347664	2 17 10-5	0.0317
103 Kli	7/2	-0,08840	195915.4	1,547004	0,207	5 125
105 KH	1/2	74,70	and the second	10,4	0,507	5,155
(40 KeV)	7/2	11120	1 24212	0.644	0.244	1 756
105 Kh r	1/2	+4,420	6.7	9,044	0,244	4,730
100 Rh r	5/0	(+)5,07	10.0.	23,4	0,445	1,400
105 Pd	5/2	-0,042	+0,80	1,957	0,00115	0,530
102 Ag +	2	+4,14	1. all (15,8	0,407	2,903
(9 KeV)	7/2	14.47	14,0076	0.74	0.251	1 903
103 Ag r	1/2	+4,47	183,2609	9,74	0,251	4,802
104 Ag r	5	+4,0	11.9659	6,10	0,118	5,729
104 Ag *	2	+3,7	038.1	14	0,291	2,650
(<15 keV)	1.12	0.1014		1 5450	4.70 10-5	0.0262
105 Ag r	1/2	0,1014	1 538.2	1,5458	4,79.10	0,0363
106 Ag r	1	+2,85	2.01	21,7	0,354	1,361
106 Ag *	6	3,71	1.1.1.2.2.1.1	4,71	0,0760	6,199
(88 keV)						
107 Ag	1/2	-0,1136796	1000	1,7330531	$6,74 \cdot 10^{-5}$	0,0407
108 Ag r	1	+2,6884		20,492	0,297	1,283
108 Ag *	6	3,580	1,52u	4,5481	0,0683	5,982
(110 keV)			are l			
109 Ag	1/2	-0,1306905	1.	1,9923854	$1,02 \cdot 10^{-4}$	0,0468
109 Ag *	7/2	+4,27	1 -0.0.044	9,30	0,219	4,587
(88 keV)		1014 1477 212 S	I A SEPTEMBER		1 PLACE 1	
110 Ag r	1	+2,7271	335.03	20,787	0,310	1,302
110 Ag *	6	+3,607	1,65u	4,582	0,0698	6,027
(118 keV)		A Second 183.18	UO hab	a altestas	COVD-SOLITIES	L'AND TROLL
111 Ag r	1/2	-0,146	100000	2,226	1,43 · 10-4	0,0523
112 Ag r	2	0,0547	Station in the	0,2085	9,39 · 10-7	0,0392
113 Ag r	1/2	0,159		2,424	$1,85 \cdot 10^{-4}$	0,0569
105 Cd r	5/2	-0,7393	+0,43u	2,2541	0,00173	0,618
107 Cd r	5/2	-0,615055	+0,68u	1,875311	$9,97 \cdot 10^{-4}$	0,514
109 Cd r	5/2	-0,827846	+0,69u	2,524114	0,00243	0,692
111 Cd	1/2	-0,595542	-1838.20	9,079078	0,00970	0,213
111 Cd *	11/2	-1,1051	-0,85u	1,5316	0,00222	1,715
(396 keV)	172	20,398		6,068 2	0.00049	(305149)
113 Cd r	1/2	-0,6223005	41820124	9,4870128	0,0111	0,223
113 Cd *	11/2	-1,087783	-0,71u	1,507575	0,00212	1,688
(264 keV)	1.12	14.0.708		10.79	0,016	(2483649)
115 Cdr	1/2	-0.648425	1 3138 61 1	9.885283	0.0125	0.232

Fortsetzung T 8.14

115 Cd *

109 In r

110 In *

((0)x)110 In *

((0)x)111 In r

112 In r

113 In

113 In *

114 In r

114 In *

115 In r

115 In *

116 In r

116 In *

117 In r

113 Sn r

115 Sn

117 Sn

119 Sn

119 Sn *

(90 keV)

121 Sn r 115 Sb r

117 Sb r

118 Sb r

118 Sb *

119 Sb r

120 Sb *

((0)x)120 Sb *

((0)x)121 Sb

122 Sb r

124 Sb r

125 Sb r

126 Sb r

127 Sb r

128 Sb r

119 Ter

119 Te *

(300 keV) 123 Te

123 Te *

(248 keV)

125 Te

11/2

1/2

-1,00

-0,88828

123 Sb

 $Q \cdot 10^{24}$ vo Kern Kern- μ/μ_N $(S/S_{1H})_{H_0=const}$ $(S/S_{H})_{\nu_0=\text{const}}$ cm² spin MHz 11/2 -1,041034-0.54u1,442785 0,00185 1,615 (173 keV) 9/2 +5.53 +0.89s9.37 0,351 7,260 2 +4,365+0,37s16,64 0,477 3,126 7 5,2 (-)0,215s5.7 0,176 9,930 9/2 +5,53+0.87s9.37 0,351 7,260 1 +2.82+0.093s21.5 0.343 1.346 9/2 +5.5289+0,777u9,3654 0.351 7,259 1/2 -0.21074 $4.30 \cdot 10^{-4}$ 3,21275 0,0755 (392 keV) +1,713 0,0752 1 0,812 5 +4,77,2 0,191 6,731 (190 keV) 9/2 +5,5408+0,861s9,3855 0,353 7,274 $6,67 \cdot 10^{-4}$ 1/2 -0,243983,71949 0,0874 (336 keV) 1 2.7867 0,09 21.242 0,331 1.330 5 6,7 0,156 6,302 +4,4(127 keV) 1/2 -0,25174 $7,32 \cdot 10^{-4}$ 0,0901 3,83779 1/2 0,880 13,416 0.0313 0,315 -0,918831/2 0,0356 14,0076 0,329 1/2 -1,0010415,2609 0,0461 0,358 1/2 -1,0472815,9659 0,0527 0,375 11/2 -1,400,21 1,940 0,00451 2,172 3/2 0,699 0.08u 3,552 0,00290 0,417 5/2 +3,46-0.20u10,5 0,177 2,891 5/2 +3,43-0.30u10,5 0,173 2,866 2,47 1 18,8 0,231 1.179 2.32 8 2.21 0.0134 4,984 (220 keV) 2,882 1,117 5,027

2,810

1,364

2,739

1,146

2,825

(2,750)

2,782

2,814

0,0895

1,474

0,264

0,318

1,552

0,00164

0,0322

			2464030	~,~ .	0,0101
	5/2 1	+3,45 2,34	-0,21u	10,5 17,8	0,176 0,196
	8	2,34	10-144	2,23	0,0138
	5/2	+3,3634	-0,020u	10,255	0,163
	2	-1,905	+0,47u	7,260	0,0397
	7/2	+2,5498	-0,26u	5,5531	0,0466
	3	1,20	2205.0	3,049	0,00588
	7/2	+2,630	- SEA ESU	5,7278	0,0511
	(8)	1,28	11225	(1,22)	(0,00226)
	7/2	2,59	1152581	5,64	0,0488
	8	1,31	13562 C	1,25	0,00242
l	1/2	0.25	0.070073	3.81	$7.17 \cdot 10^{-4}$
	11/2	0,95	1,5316	1,32	0,00141
	1/2	-0,73679	9,4870128	11,2324	0,0184

1,386

13,5419

T 8.14

Kern Kern- spin		$\mu/\mu_{\rm N}$	$Q \cdot 10^{24}$ cm ²	ν ₀ MHz	$(S/S_{^{1}\mathrm{H}})_{H_{0}=\mathrm{const}}$	$(S/S_{^{1}\mathrm{H}})_{\nu_{0}=\mathrm{const}}$
125 Te *	11/2	-0,93	1.04816(2	1,29	0,00132	1,443
(145 keV)		0.51	2.84	1.16	3,73~10"*	(VB:REC)
127 Te r	3/2	0.635a	00186598	3,227	0,00218	0,379
127 Te *	11/2	-0.91	1,387	1.26	0.00124	1,412
(88 keV)	, =			.,		CV68360
120 Ter	3/2	0.702a	17088330F	3 567	0.00294	0.419
129 101	11/2	-1.15	5,8650	1.59	0.00250	1 784
(106 koV)	11/2	1,15	0100.2	1,00	0,00200	12 10 10 10 10
(100 Kev)	2/2	0.6969	A 108.2m	3 537	0.00287	0.415
131 Te *	11/2	-1.04	1,4548	1 44	0.00185	1.614
(1921-3/)	11/2	-1,04	1000	1,44	0,00105	
(182 KeV)	5/2	2 9190	0.070	8 502	0.0050	2 354
12311	5/2	2,010a	0.000	8,592	0,0959	2,354
125 I r	5/2	2,021a	-0,889	8,001	0,0962	2,350
1271	5/2	+2,81327	-0,789	8,57770	0,0954	2,330
129 I r	1/2	+2,6210	-0,555	5,70819	0,0506	2,815
131 I r	7/2	+2,/42	-0,40	5,972	0,0579	2,945
132 I r	4	3,088	0,09	5,885	0,0704	3,686
133 I r	7/2	+2,856	-0,27	6,220	0,0655	3,068
129 Xe	1/2	-0,777976	i mariane	11,86030	0,0216	0,279
129 Xe *	11/2	-0,847		1,174	$9,99 \cdot 10^{-4}$	1,314
(236 keV)		1.101	014.1	1	APAller Inch	NT NEPET
131 Xe	3/2	+0,691861	-0,120u	3,515822	0,00282	0,413
131 Xe *	11/2	-0,80	1.000	1,109	$8,42 \cdot 10^{-4}$	1,241
(164 keV)		100 0 5	2.11		at states as	12
133 Xe *	11/2	-0,87	97.5	1,21	0,00108	1,350
(233 keV)		Contra Co	1000	and the second		The second card
121 Csr	3/2	0,785a	0.74	3,989	0,00411	0,468
122 Csr	1	0,133a	11.12.5	1,014	$3,60 \cdot 10^{-5}$	0,0635
122 CST	1/2	1.389a	4-31649	21,18	0,123	0,497
124 Cer	1	0.674a	and the second second	5,138	0.00469	0.322
125 Cor	1/2	+1.41	1	21.5	0.129	0.505
125 CST	1/2	0.779a	and a second	5.938	0.00723	0.372
120 CS I	1/2	+1.46		22.3	0.143	0.523
127 CS 1	1/2	0.0779	1001-1	7 447	0.0143	0.466
128 Cs r	1/2	11.492	1 (H) CPU	22.50	0.149	0.531
129 Cs r	1/2	+1,402		11 17	0.0482	0,700
130 Cs r	- (D	1,400a	0.620s	10.80	0,0482	2,960
131 Cs r	5/2	+3,343	-0,0205	8 460	0,191	1 501
132 Cs r	2	+2,222	+0,5085	5 622202	0,0030	2 774
133 Cs	1/2	+2,582025	-0,0035	5 7040	0,0464	2,774
134 Cs r	4	+2,9937	+0,3898	1.0460	0,0042	2 2 2 5 9
134 Cs *	8	+1,0978	2,68	1,0400	0,00142	2,338
(139 keV)	0		10.050-	5 0500	0.0572	2.025
135 Cs r	7/2	+2,7324	+0,050s	5,9508	0,0573	2,935
136 Cs r	5	+3,711	+0,225s	5,657	0,0938	5,315
137 Cs r	7/2	+2,8413	+0,051s	6,1880	0,0645	3,052
138 Cs r	3	0,701	0,125s	1,781	0,00117	0,669
139 Cs r	7/2	2,969	-0,075s	6,466	0,0736	3,189
140 Cs r	1	0,134	-0,112s	1,021	3,68 · 10-5	0,0640
141 Cs r	7/2	2,438	-0,36s	5,310	0,0407	2,619
129 Ba r	1/2	-0,398	4,325	6,068	0,00289	0,143
129 Ba *	11/2	+0,930	1,94u	1,2889	0,00132	1,443
(277 keV)	1 1 10	3,34	1,73	+0.94s	-0.34	135 139 1 2
131 Ba r	1/2	-0,708	1.525	10,79	0,0163	0,254
133 Ba r	1/2	-0,777	1,4651	11,85	0,0215	0,278

Kern	Kern- spin	$\mu/\mu_{\rm N}$	$Q \cdot 10^{24}$ cm ²	ν ₀ MHz	$(S/S_{^{1}\mathrm{H}})_{H_{0}=\mathrm{const}}$	$(S/S_{^{1}\mathrm{H}})_{v_{0}=\mathrm{const}}$
133 Ba *	11/2	-0,912	1,08u	1,264	0,00125	1,415
135 Ba	3/2	10 837043	+0.180	4 258166	0.00500	0.500
135 Ba *	11/2	-1.001	1 160	1 387	0.00165	1.553
(268 keV)	11/2	-1,001	1,100	1,507	0,00105	1,555
137 Ba	3/2	+0.937365	+0.281	4 763307	0.00700	0.550
137 Lar	7/2	+2 695	+0.260	5 869	0.0550	2 805
138 Lar	5	+3 7130	+0,203	5,6619	0.0941	5 310
139 La	7/2	+2 7832	+0.22s	6.0614	0.0606	2 990
140 Lar	3	+0.730	+0.103e	1 8548	0.00132	0.697
137 Cer	3/2	0.91	10,1000	4.62	0.00641	0.543
137 Ce *	11/2	0.70		0.970	5.64 . 10-4	1.086
(254 keV)	11/2	0,10	7658	0,770	5,04.10	1,000
139 Cer	3/2	0.96	100.8	4 88	0.00752	0.573
141 Cer	7/2	0.970	0/11/6'8	2 1125	0.00257	1.042
143 Ce r	3/2	≈1	- 21801 C	~5	≈0.00850	≈0.597
141 Pr	5/2	+4 136a	-0.0241	12.61	0.303	3 455
147 Pr r	2	+0.2342	±0.0297u	0.892	7 35 - 10-5	0.168
142 Pr *	5	22	+0,02974	3.4	0.0196	3 151
(4 keV)	5	2,2	19786030	5,4	0,0150	5,151
143 Nd	7/2	-1.065	-0.56s	2 3 1 9	0.00340	1 144
145 Nd	7/2	-0.656	-0.29s	1.429	7.93.10-4	0.705
147 Nd r	5/2	0.554	0.9	1.689	7.29.10-4	0.463
149 Nd r	5/2	0.351	13	1,070	1.85 - 10-4	0.293
143 Pm r	5/2	3.78	1,5	11.5	0.231	3 1 5 8
144 Pm r	5	1.69	1.21	2 58	0.00886	2 420
147 Pm r	7/2	+2.58	+0.74u	5.62	0.0483	2,771
148 Pm r	1	+2.08	+0.2u	15.9	0.138	0.993
148 Pm *	6	1.82	10,24	2.31	0.00897	3.041
(137 keV)		L. T. T. T. T.	1 - 이 영문		2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
149 Pm r	7/2	3.3	821,274	7.2	0,101	3,545
151 Pm r	5/2	1.8	1.9u	5.5	0.0250	1.504
145 Sm r	7/2	0.92	5,938	2.00	0.00219	0.988
147 Sm r	7/2	-0.8109	-0.18u	1.7660	0.00150	0.871
149 Sm	7/2	-0,6692	+0,060u	1,4574	$8.42 \cdot 10^{-4}$	0,719
151 Sm r	5/2	0,355	12:49	1,082	$1.92 \cdot 10^{-4}$	0,297
153 Sm r	3/2	-0.0216	+1.0u	0,1098	$8.57 \cdot 10^{-8}$	0.0129
151 Eu	5/2	+3,4717	+1,12	10,585	0,179	2,900
152 Eu r	3	-1,9414	+3,16u	4,9328	0,0249	1,854
153 Eu	5/2	+1,5330	+2,85	4,67414	0,0154	1,281
154 Eu r	3	2,005	+3.9u	5,094	0,0274	1,914
155 Eu r	5/2	1,93	0840970	5,88	0,0308	1,612
155 Gd	3/2	-0,2591	+1,59u	1,3167	$1,48 \cdot 10^{-4}$	0,155
157 Gd	3/2	-0,3398	+1,69u	1,7268	$3,34 \cdot 10^{-4}$	0,203
159 Gd r	3/2	-0,44	5,657	2,24	$7,24 \cdot 10^{-4}$	0,263
155 Tb r	3/2	2,0	6.1880	10,2	0,0680	1,194
156 Tb r	3	1,41	+1,40u	3,58	0,00953	1,346
157 Tb r	3/2	2,0	6,466	10,2	0,0680	1,194
158 Tb r	3	+1,785	+2,7s	4,467	0,0185	1,679
159 Tb	3/2	+2,014	+1,34s	10,23	0,0694	1,202
160 Tb r	3	+1,702	+3,0s	4,325	0,0168	1,625
153 Dy r	7/2	-0,72	-0,15s	1,57	0,00105	0,773
155 Dy r	3/2	-0,34	+0,94s	1,73	$3,34 \cdot 10^{-4}$	0,203
157 Dy r	3/2	-0,30	+1,27s	1,525	$2,30 \cdot 10^{-4}$	0,179
161 Dy	5/2	-0,4805	+2,33s	1,4651	$4,75 \cdot 10^{-4}$	0,401

T 8.14

Kern Kern spin		$\mu/\mu_{\rm N}$	$Q \cdot 10^{24}$ cm ²	ν ₀ MHz	$(S/S_{^{1}\mathrm{H}})_{H_{0}=\mathrm{const}}$	$(S/S_{^{1}\mathrm{H}})_{\nu_{0}=\mathrm{const}}$
163 Dv	5/2	+0.6726	+2.46s	2.0508	0.00130	0,562
165 Dy r	7/2	0.51	2.8u	1.11	$3.73 \cdot 10^{-4}$	0.548
165 Ho	7/2	+4,173	+3.49t	9.088	0.204	4,483
166 Ho *	(7)	4.1		(4.5)	(0.0861)	(7.830)
(5keV)	(')	610	9318.0		5/2 40.2197	101 101
161 Fr r	3/2	-0.370	+1.20s	1.8802	4.31 - 10-4	0,221
163 E r r	5/2	+0.57	+2.2s	1.74	$7.93 \cdot 10^{-4}$	0,476
165 Er r	5/2	0.66	2.20	2.01	0.00123	0.551
167 Er	7/2	-0.5665	+2.827u	1.2338	$5.11 \cdot 10^{-4}$	0,609
169 Er r	1/2	+0.515	000.0 - 11	7.851	0.00627	0,184
171 Er r	5/2	0.70	2.4u	2,134	0.00147	0.585
163 Tm r	1/2	0.081	8,352	1.235	$2.44 \cdot 10^{-5}$	0.0290
165 Tm r	1/2	0.139		2.119	$1.23 \cdot 10^{-4}$	0.0498
166 Tm r	2	0.092	1.855	0.351	$4.47 \cdot 10^{-6}$	0.0659
167 Tm r	1/2	-0.197	0,8985	3.003	3.51 - 10-4	0,0705
169 Tm	1/2	-0.2316	2,82	3,5308	$5.70 \cdot 10^{-4}$	0.0829
170 Tm r	1	0.2476	0.574u	1.8873	$2.32 \cdot 10^{-4}$	0,118
171 Tm r	1/2	0.2303	60.0	3,5109	$5.61 \cdot 10^{-4}$	0,0825
160 Vh r	7/2	-0.63	+4,10u	1.37	$7.03 \cdot 10^{-4}$	0,677
171 Vb	1/2	+0.49367	9,700	7,52603	0.00552	0,177
173 Vh	5/2	-0.67989	+2.80t	2.07299	0.00135	0.568
175 Vbr	7/2	0.58	12,001	1.26	$5.48 \cdot 10^{-4}$	0.623
171 Lur	7/2	2.03	0.438	4.42	0.0235	2,181
177 Lur	4	2.25	-1020	4.29	0.0272	2.685
172 Lui 173 Lur	7/2	2.34	101.0	5.10	0.0360	2,514
175 Lur	(1)	1.94	0.0602	(14.8)	(0.112)	(0.926)
174 Lu *	(6)	2.34	1. 6,214	(2.97)	(0,0191)	(3,910)
(171 keV)	(0)	00.375	0.561	(-+> / /	0.074	1-1
175 Lu	7/2	+2,23799	+3,46t	4,87404	0,0315	2,404
176 Lur	7	+3,19	+8,0u	3,47	0,0406	6,092
176 Lu *	1	+0,318	-2,39u	2,424	$4,92 \cdot 10^{-4}$	0,152
(127 keV)	1 6	100.0	1 22340		NIG.01 1. 10 29 14	
177 Lu r	7/2	+2,239	+5,51u	4,876	0,0315	2,405
177 Lu *	23/2	3,3		2,2	0,0260	9,847
(970 keV)	19 2-01	1000	0.75289	8-1-1-20,5471	3/2 1.0.1.3-0.1481	
175 Hf r	5/2	0,70	+2.7	2,134	0,00147	0,585
177 Hf	7/2	+0,7935	+4,5s	1,7281	0,00140	0,852
179 Hf	9/2	-0,6409	+5,1s	1,0856	$5,47 \cdot 10^{-4}$	0,841
179 Hf*	25/2	7,43	19221	4,53	0,271	23,943
(1106 keV)		12.0357	3.175	1.005	13 610	
180 Hf *	8	+9,0	+4,4	8,58	0,784	19,335
(1142 keV)	1 0	2003	BOLLT		1/2 Laure-0.5071	
178 Ta r	1	+2,89	2,988	22,0	0,369	1,380
180 Ta	(9)	4,77a	1.252.3	(4,04)	(0,103)	(11,386)
181 Ta	7/2	+2,371	+3,9u	5,164	0,0375	2,547
182 Ta r	3	(+)2,98a	3,0927	7,57	0,0900	2,845
183 W	1/2	+0,1177847		1,7956356	$7,50 \cdot 10^{-5}$	0,0422
187 W r	3/2	0,688	CLORDIT	3,496	0,00277	0,411
181 Re r	5/2	3,242	TORNE IN IT	9,885	0,146	2,709
182 Re *	7	2,79a	5.7	3,04	0,0271	5,328
((0)x)		COOD	CRAZER		Lathe Da	-N 201
182 Re *	2	3,11a	202001	11,9	0,173	2,227
((0)x)		and the second sec	and the second s		and the second second	States and
183 Re r	(5/2)	(+)3,19	20000	(9,73)	(0,139)	(2,665)
184 Re r	3	(+)2,499	New Yorks 1 Adv	6,350	0,0531	2,386

Fortsetzung T 8.14

Kern	Kern- spin	Kern- μ/μ_N spin		$\begin{array}{cc} Q \cdot 10^{24} & \nu_0 \\ cm^2 & MHz \end{array}$		$(S/S_{^{1}\mathrm{H}})_{\nu_{0}=\mathrm{const}}$	
184 Re * (188 keV)	8	(+)2,90	-2,030	2,763	0,0262	6,230	
185 Re	5/2	+3,1871	+2.36u	9,7175	0.139	2.663	
186 Re r	1	+1.739	≈0.4	13.26	0.0805	0.830	
187 Re r	5/2	+3,2197	+2.24u	9,8169	0,143	2,690	
188 Re r	1	+1.788	≈0.4	13.63	0.0875	0.854	
183 Os r	9/2	(-)0,794a	2010 1	1,345	0,00104	1,042	
187 Os	1/2	+0,06465184	580.0	0,98562163	$1.24 \cdot 10^{-5}$	0,0231	
189 Os	3/2	+0,659933	+0.86	3,353574	0,00244	0,394	
193 Os r	3/2	1,30	+0.87	6,606	0,0187	0,776	
191 Ir	3/2	+0,1461	+0,86t	0,7424	$2.65 \cdot 10^{-5}$	0.0872	
191 Ir *	11/2	6,026	220 1	8.352	0.360	9,350	
(171 keV)			orne		0210		
192 Ir r	4	+1.880	125.0	3.5826	0.0159	2.244	
193 Ir	3/2	+0.1591	+0.78t	0.8085	$3.42 \cdot 10^{-5}$	0.0949	
194 Ir r	1	0.37		2.82	$7.75 \cdot 10^{-4}$	0,177	
189 Pt r	3/2	0.41a	C. C. C. Law	2.08	5.86 . 10-4	0.245	
191 Pt r	3/2	0.45a	and a figure of the	2.29	7.75 . 10-4	0.269	
195 Pt	1/2	+0.60949	1000	9,29172	0.0104	0.218	
195 Pt *	13/2	0.597	10000	0.700	2.89 . 10-4	1.069	
(259 keV)		0,000	1000	0,100		.,	
197 Pt r	1/2	0.51	200	7 77	0.00609	0.183	
188 Aur	1	0.0649	Ora a	0.488	4.01, 10-6	0,0306	
100 Au r	1	0.066	1222 11	0,400	4.40.10-6	0,0300	
191 Aur	3/2	0.138	112	0,303	2.23.10-5	0.0874	
197 Aur	1	0.0079	Mar II	0.0602	7 54 . 10-9	0.00377	
193 Aur	3/2	0.140	12221	0.7114	2 33 - 10-5	0.0835	
194 Au r	1	0.074	Street II.	0 564	$6.20 \cdot 10^{-6}$	0.0353	
195 Au r	3/2	0.148	and an and	0.752	$2.76 \cdot 10^{-5}$	0.0883	
195 Au *	11/2	6.268a	CK I	8.687	0.405	9 725	
(319 keV)	,=		1000	0,007	0,100	1,120	
196 Au r	2	+0 5914		2 2540	0.00119	0.424	
196 Au *	12	5 35	AC8 8.	3 40	0.106	16 602	
(595 keV)	12	5,55	1 Mater	5,10	0,100	10,002	
197 Au	3/2	+0 148158	+0.547t	0 752803	2.76.10-5	0.0884	
198 Au r	2	+0 5934	10,5470	2 2616	0.00120	0.425	
198 Au *	(12)	5 55	Der Z	3 53	0.118	17 223	
(812 keV)	(12)	0,00	dan 1	5,55	0,110	17,0000	
100 Au r	3/2	+0.2715	10x A	1 3707	1 70 . 10-4	0.162	
200 Au *	12	6.10	83	3 875	0.157	18 929	
(~1000 keV)	1.60	0,10	90.9	5,675	0,157	10,727	
181 Har	1/2	10 5071		7 7209	0.00500	0.192	
101 Hg I	1/2	+0,5071	55mec	7,7306	0,00399	0,182	
105 Hg r	1/2	+0,524	tilling and the	7,900	0,00001	0,100	
105 Hg I	1/2	+0,507	0.500	2 012	0,00398	0,162	
10/ Hg F	3/2	-0,393	-0,508	3,013	0,001/7	0,354	
((0)x)	3/2	-0,0080	-1,158	3,0927	0,00192	0,365	
102 Har	2/2	0.62757	0.96	2 19010	0.00010	0.275	
193 Hg F	3/2	-0,02/5/	-0,805	3,18912	0,00210	0,375	
(14) hell	13/2	-1,038429	+1,085	1,241217	0,00161	1,895	
(141 keV)	1.10		.01	0.00/000	0.007700	0.101	
195 Hg r	1/2	+0,541475		8,254823	0,00729	0,194	
195 Hg *	13/2	-1,044647	+1,27s	1,225055	0,00155	1,870	
(1/6 keV)	12.0	16 KOO	(889)	1.525	101.320. 10 76.8	1. 1. 1. 1. 1.	
197 Hg r	1/2	+0,5273741	6,650	8,0398535	0,00673	0,189	

Kern	Kern- spin	$\mu/\mu_{\rm N}$	$Q \cdot 10^{24}$ cm ²	ν ₀ MHz	$(S/S _{\mathrm{H}})_{H_0=\mathrm{const}}$	$(S/S_{H})_{\nu_0=\mathrm{const}}$
197 Hg *	13/2	-1,027684	+1,47s	1,205162	0,00147	1,840
(299 keV)	E = Fige	kenguras: ST = Storio	in Street		(298)	A
199 Hg	1/2	+0,5058851	1- 9 Fm - 0	7,7122522	0,00594	0,181
199 Hg *	13/2	-1,014702	+1,40s	1,189938	0,00142	1,817
(532 keV)	670	-0-11 July	1.031.25		AS - A,81598	144 141
201 Hg	3/2	-0,560225	+0,39s	2,846889	0,00149	0,334
203 Hg r	5/2	+0,84895	+0,40s	2,58846	0,00262	0,709
205 Hg r	1/2	+0,6010		9,16229	0,00997	0,215
194 Tl r	2	0.14	DCD8.4	0,53	$1.57 \cdot 10^{-5}$	0,100
195 Tl r	1/2	+1,66	21.00.0	25,3	0,210	0,594
196 TLr	2	0,07	ACT DI CANO	0,27	$1.97 \cdot 10^{-6}$	0,0501
197 Tl r	1/2	+1,66	1 1 20	25,3	0,210	0,594
198 Tl r	2	0,00	1 1 1 1 1 1 1	0,000	0,00	
198 TI *	7	0,64	52.0	0,70	$3,27 \cdot 10^{-4}$	1,222
(544 keV)	143	115 \$29.0 1 159	73.7	64,67	£.04	NH
199 Tl r	1/2	+1,64	14,82	25,0	0,202	0,587
200 Tl r	2	0,04	1.00,02	0,15	3,67 · 10-7	0,0286
201 Tl r	1/2	+1,66	59,06	25,3	0,210	0,594
202 Tl r	2	0,06	5.68	0,23	$1,24 \cdot 10^{-6}$	0,0430
203 T1	1/2	+1,622257	1	24,73142	0,196	0,581
204 Tl r	2	0,0908	1 2 18	0,3461	$4,30 \cdot 10^{-6}$	0,0650
205 T1	1/2	+1,6382134	71,42	24,974673	0,202	0,587
207 Pb	1/2	+0,592582	1.146.78	9,033952	0,00955	0,212
203 Bir	9/2	+4,62	-0,64u	7,83	0,205	6,065
204 Bir	6	+4,28	-0,41u	5,44	0,117	7,152
205 Bi r	9/2	(+)4,16	SONIS as	7,05	0,150	5,462
206 Bi r	6	+4,59	-0,19u	5,83	0,144	7,670
207 Bi r	9/2	4,63	-0,50	7,84	0,206	6,079
209 Bi	9/2	+4,1106	-0,37t	6,9629	0,144	5,397
210 Bir	1	-0,0446	+0,13u	0,3400	$1,36 \cdot 10^{-6}$	0,0213
205 Po r	5/2	$+ \approx 0.26$	+0,17u	≈0,79	$\approx 7.53 \cdot 10^{-5}$	≈0,217
207 Po r	5/2	$+ \approx 0.27$	+0,28u	≈0,82	$\approx 8,43 \cdot 10^{-5}$	≈0,226
209 Po r	1/2	$+ \approx 0.77$		≈11,7	≈0,0210	≈0,276
227 Ac r	3/2	+1.1	+1.7	5,6	0,0113	0,656
229 Th r	5/2	+0.46	+4,3	1,40	$4,17 \cdot 10^{-4}$	0,384
231 Par	3/2	2.01	Contrast 1	10,2	0,0690	1,199
233 Par	3/2	+3.5	-3,0	18	0,364	2,089
233 IIr	5/2	+0.55	+3,5	1,68	$7,13 \cdot 10^{-4}$	0,460
235 Ur	7/2	-0.35	+4,55t	0,76	$1,21 \cdot 10^{-4}$	0,376
237 Nn r	512	+3.14	+4.1u	9,57	0,133	2,623
230 Pu r	1/2	+0.203		3,095	$3,84 \cdot 10^{-4}$	0,0727
239 Tu 1	5/2	-0.714	+5.6u	2,177	0.00156	0.597
241 Ful 241 Am r	5/2	+1.61	+4.9u	4.91	0.0179	1.345
241 Am r	1	+0.3878	-2.760	2.9560	$8.92 \cdot 10^{-4}$	0.185
242 Am r	5/2	+1.61	+4.90	4.91	0.0179	1.345
243 Am 1	5/2	0.41	1 1,5 4	1.25	$2.95 \cdot 10^{-4}$	0.343
245 Cm r	7/2	0,41		1.1	$3.51 \cdot 10^{-4}$	0.537
243 Cm 1	0/2	0.37	L. Martin	0.63	$1.05 \cdot 10^{-4}$	0.486
247 Cm F	7/2	2.0	+5.79	4.36	0.0225	2 148
249 BK F	7/2	-4.100	670	8 9 2 9	0.194	4 404
253 ES F	1/2	2,000	3.70	11.05	0.140	2 077
234 ES*	2	2,90a	5,15	11,00	0,140	2,077
(/8 KeV)		-1838 281	1	28024 71	2 852 . 108	658.2
reles		-1030,201	14	20027,71	2,002 10	050,4
Elektron	Sec. 2	$g_e = 2,00231931.$	0.0.10.6		N CONCEL OF STREET	savel manager
Charred De	extrose	$g = 2,0025917 \pm$	$2,5 \cdot 10^{-6}$ (1	Kalibrierungsstanda	ra)	methodiate 2.1

a in

4.81595

0.88986

1,09160

1.43262

1.54037

1,54370

1,50893

273 K

33

23.0

31

30.5

28.0

27.0

40.2

36.5

40.7

105

40,3

 Λ in 10⁻⁴ m² Ω^{-1} mol⁻¹; T in K.

H⁺

Li⁺

Na⁺

 K^+

CI-

J-

Br⁻

Ag⁺

NH4

Mg²⁺

Ca2+

Cu2+

Zn2+

OH-NO₁

CIO

SO₄²

429

439

264

277

1323

1373

N(CH₃)

 Λ_{∞} (298)

349.85

38,64

50,15

73.50

76.35

78.17

76.85

8.15 Ionenleitfähigkeiten Λ_{∞}^+ , Λ_{∞}^- in wässeriger Lösung – Ionic conductivities Λ_{∞}^+ , Λ_{∞}^- in aqueous solutions (W. Seidel)

b in

-1.03125

0,44075

0,47150

0.40563

0.4650

0,4470

0,4375

298 K

62,2

44.82

53,06

59,06

55,5

54

71,42

67,94

80.8

Literatur: Falkenhagen, H.: Kelbg, G.: Schmutzer, E. (1960): In: Landolt-Börnstein, Zahlenwerte

197

73.7

 $10^{-6} \text{m}^2 \ \Omega^{-1} \text{ mol}^{-1} \text{ K}^{-2}$

323 K

101

115

98

93.2

284

125

106,7

c in

-0.7670

-0.2042

-0,1150

-0,3183

-0.1285

-0.230

-0,2170

348 K

143

159

142

360

177

 $10^{-8} \text{m}^2 \ \Omega^{-1} \text{ mol}^{-1} \text{ K}^{-3}$

373 K

180

207

121.0

170

187

449

189

183

256

160

170

363K:

278 K $\leq T \leq 328$ K: $\Lambda_{\infty}(T) = \Lambda_{\infty}(298) + a \cdot (T - 298) + b \cdot (T - 298)^2 + c \cdot (T - 298)^3$

291 K

53.86

64.67

39.72

46,0

51,41

45,7

47.0

174

62,04

59,1

68.3

 $10^{-4} \text{m}^2 \ \Omega^{-1} \text{ mol}^{-1} \text{ K}^{-1}$

u. Funk Detherr 8.16 Temper	L. Funktionen, 6. Aufl. 2. Bd., Teil 7, S. 257–268; Berlin, Göttingen, Heidelberg: Springer. Weitere Daten: ELDAR. Detherm-Datenbank, Frankfurt: Dechema. 8.16 Leitfähigkeit von Salzschmelzen – Conductivity of molten salts (W. Seidel) Femperaturen T in K; spez. Leitfähigkeit σ in Ω^{-1} m ⁻¹ .											
Т	NaCl	Na ₂ SO ₄	NaNO ₃	Na ₃ PO ₄	KCI	KNO3	MgCl ₂	CaCl ₂	AgNO ₃	AgCl	ZnCl ₂	LaCl ₃
523 573 623 673 723 773 823 873 923 973 1023 1073 1123 1123 1123 1223	358 375 391 405 417	223 237 250	115 135 156 176	55 80 105	225 236 247 256 265	66 81 97 112	109 119 129 137 144 155	221 238 256 271	85 106 127	419 429 439 450 480 490	1,48 4,48 8,38 15,6 23,6 31,2	130

Literatur: Drossbach, P. (1960): In: Landolt-Börnstein: Zahlenwerte u. Funktionen, 6. Aufl. 2. Bd., Teil 7, S. 1–5. Berlin, Göttingen, Heidelberg: Springer.

273

280

T 8.15, 8.16, 8.17

8.17 Überführungszahlen t_i der Ionen in festen Leitern – Transference numbers t_i of ions in solid conductors (W. Seidel)

Temperaturen *T* in K; $\sigma = \sigma_0 \cdot \exp(-E^*/RT)$ in $\Omega^{-1}m^{-1}$ (vgl. Gl. (8.147)); relative Aktivierungsenergie E^*/R in K. Probenart: E = Einkristall; S = erstarrte Schmelze; P = Preßkörper. Leitungsart: EL = Eigenleitung; ST = Störleitung.

Sub-	Т	Überführungs-	Spezifische	Leitfähigk	eit nach Gl. (8.147)	
stanz	Beneatly diochining	zahl	σ_0	E^*/R	Т	P-, L-Art
LiCl	500 < T < 1100	$t_{\rm Li^+} \approx 1$	$5 \cdot 10^9 \\ 1,15 \cdot 10^2$	19 100 6 850		E, EL S, ST
NaCl	698 773	$t_{\rm Na^+} = 1 - t_{\rm Cl^-}$ 1,0 0.98	1.108	21 900	< 1073	E, EL
	823 853 873	0,94 0,92 0,91	3,6.102	10 200	$643 \leqslant T \leqslant 833$	P, ST HE CHAR
uttes o	perific conducti	$t_{\rm K^+} = 1 - t_{\rm C1^-}$	riger, KCN	it, wilsar	eche, Leitfähigke	Illen Sperit
KCl	723	0,96	$2 \cdot 10^8$ (13)	23 700	< 1041	E, EL
	823 873 923 973	0,91 0,88 0,85 0,83	2.102	11 500	$523 \leqslant T \leqslant 723$	P, ST
KBr	878	$t_{\rm K^+} = 1 - t_{\rm Br^-}$ 0,5	$\begin{array}{c} 1,5\cdot 10^8 \\ 9,5\cdot 10^2 \end{array}$	22 700 9 900	$ \begin{array}{c} 1001 \\ 493 \leqslant T \leqslant 673 \end{array} $	E, EL P, ST
PbJ ₂	428 467 501 528 543 563 611 649	$t_{Pb^{2+}} = 1 - t_{J^-}$ $4 \cdot 10^{-3}$ $3 \cdot 10^{-2}$ 0.12 0.33 0.45 0.6 0.82 0.97	$J^{-}: \\ 9, 79 \cdot 10^{-2} \\ Pb^{2+}: \\ 1, 15 \cdot 10^{7}$	4 710 15 100	$\left. \right\} \ 423 \leqslant T \leqslant 648$	Lonzen-Terni aution in 9.9– noi dm 25.0–10 2– ⁰ m ⁻¹ C00314 20.0– titeratura-5 alk or nitrionen, 67 Auft.
CuCl	313 451 470 498 505 517 527 573	$\begin{array}{c} t_{Cu^+} = 1 - t_{e^-} \\ 0.02 \\ 0.05 \\ 0.12 \\ 0.50 \\ 0.50 \\ 0.78 \\ 0.90 \\ 0.99 \end{array}$	nifiktigon - Standar notsjogg - Standar motolog - Standar -	faitrine Strodet en elect 7, na 19 -3,045 -2,714		bmeiß: 01. dansig: (0. дч)); nivna: лиес = ^{10. 12} ым. +0. 4ымым
Cu ₂ O	1073 1173 1273 1273	$t_{Cu^+} = 1 - t_{e^-}$ 2,2 \cdot 10^{-4} 3,5 \cdot 10^{-4} 5 \cdot 10^{-4} 5 \cdot 10^{-4}	bei 0,7 mbar (bei 5,2 mbar (bei 0,85 mbar bei 56 mbar ($ \begin{array}{c} D_2 \\ D_2 \\ O_2 \\ O_2 \\ D_2 \end{array} $	085 0	MoMero AIH4QH5(A) AUAT5 H5+2OH721 Zn/Zn ⁴² 0
FeO	1273	$t_{\rm Fe^{2+}} = 1 - t_{\rm e^-}$ 1,1 \cdot 10^{-3}	bei Fe ₂ O ₃ -Ze	rsetzungsd	lruck	Porfe ²⁺

Sub-	T	Überführungs-	Spezifisc	Spezifische Leitfähigkeit nach Gl. (8.147)				
stanz		zahl	σ_0	E*/R	Т	P-, L-Art		
FeS	943	$\begin{vmatrix} t_{\rm Fe^{2+}} = 1 - t_{e^-} \\ 1 \cdot 10^{-3} & 1 \end{vmatrix}$	 33 mbar ≲	$p_{s_2} \leqslant 1013$	mbar	n e o se a se a se a e o Materiali E = Eininatalo Materiali E = E cristiano		
TiO ₂	1123	$t_{\text{Ti}^{4+}} = 10^{-5}$ $t_{\text{O}^{2-}} = 10^{-3}$	nis Leinel	10 0 0 53	and R	Sub- T		
γ-CuJ	528 573 598 623 648	$t_{Cu^+} = 1 - t_{J^-} t_{e^-}$ 0, 01 0, 25 0, 5 0, 75 0, 98	3 41 5 501	17 500	<637	S, Ionenleitungs- komponente		

Fortsetzung T 8.17

 673
 1,0

 Literatur: Jost, W.; Weiss, K.; Wagner, H.G. (1959): in Landolt-Börnstein: Zahlenwerte und Funktionen,

 6. Aufl. 2. Bd., Teil 6, S. 223–248. Berlin, Göttingen, Heidelberg: Springer

8.18 Spezifische Leitfähigkeit wässeriger KCl-Lösungen – Specific conductivities of aqueous KCl-solutions (W. Seidel)

Eichlösungen σ in Ω^{-1} m ⁻¹										
g KCl in 1	kg Lösung	<i>T</i> = 291	K	01	T = 293	Κ		T = 29	8 K	
71, 3828 g		9,8200	$\pm 0, 0$	00009	10, 2024	±0,	00007	11, 173	± 0	0,0011
7,43	344 g	1, 1191	$9 \pm 0, 0$	00011	1, 1667	$16 \pm 0,$	00007	1,288	36 ± 0	, 0001
0, 74	6558 g	0, 1222	$69 \pm 0, 0$	0000016	0, 1275	$57 \pm 0,$	00002	0, 141	145 ± 0	, 00002
Konzen- tration in	Temperatu	ir 298 K	an.			0-1=	Y _{PD} ER -			
mol $\rm dm^{-3}$	$1 \cdot 10^{-3}$	$5 \cdot 10^{-3}$	1.10^2	$5 \cdot 10^{-2}$	0,1	0,5	1,0	2,005	3,0	3,959
$\Omega^{-1}m^{-1}$	0,014695	0,071795	0,1413	0,66685	1,2896	5,860	11,19	21,215	30,114	37,448

Literatur: Falkenhagen, H.; Kelbg, G.; Schmutzer, E. (1960): In: Landolt-Börnstein: Zahlenwerte u. Funktionen, 6. Aufl. 2. Bd., Teil 7, S. 27-89. Berlin, Göttingen, Heidelberg: Springer.

8.19 Standard-Redoxpotentiale in wäßrigem Elektrolyten in V (bezogen auf die Standard-Wasserstoffelektrode) – Standard potentials in aqueous solution in V (vs. the standard hydrogen electrode) (B. Kastening)

T	$= 298 \mathrm{K}$. Aktivitäten a_i	= 1	(siehe 8.6.2	7).	Bei	Formulierung o	ler	Redoxsysteme	ist H	H_2O	weggelassen.
---	--	-----	--------------	-----	-----	----------------	-----	--------------	-------	--------	--------------

Li/Li ⁺	-3,045	Pb/Pb ²⁺	-0,126
Na/Na ⁺	-2,714	$H_2/2H^+$	0,000
Mg/Mg ²⁺	-2,356	CH ₃ OH/HCOOH+4H ^{+ 2})	+0,100
$Al+4OH^{-}/Al(OH)_{4}^{-}$	-2,310	Cu/Cu ²⁺	+0,340
Al/Al ³⁺	-1,676	$Fe(CN)_{6}^{4-}/Fe(CN)_{6}^{3-}$	+0,361
$H_2+2OH^-/2H_2O$	-0,828	40H ⁻ /O ₂	+0,401
Zn/Zn^{2+}	-0,763	2I ⁻ /I ₂	+0,536
(COOH) ₂ /2CO ₂ +2H ^{+ 2})	-0,481	Br ^{-+60H⁻/BrO₃⁻}	+0,584
Fe/Fe ²⁺	-0,44	MnO ₂ +4OH ⁻ /MnO ₄	+0,62
Cd/Cd ²⁺	-0,403	$H_2Q/Q+2H^{+1})$	+0,700

T 8.17, 8.18, 8.19, 8.20

Fortsetzung T 8.19

Fe ²⁺ /Fe ³⁺	+0,771	$2Cr^{3+}/Cr_2O_7^{2-}+14H^+$	+1,36
Ag/Ag ⁺	+0,799	$Mn^{2+}/MnO_{4}^{-}+8H^{+}$	+1,51
$2Br^{-}/Br_{2}$	+1,065	Ce^{3+}/Ce^{4+}	+1,72
2H2O/O2+4H+	+1,229	$2SO_4^{2-}/S_2O_8^{2-}$	+1,96
2Cl ⁻ /Cl ₂	+1,358	$2F^{-}/F_{2}$	+2,87

¹) H₂Q: p-Benzohydrochinon; Q: p-Benzochinon.

²) Beispiele organisch-chemischer Redox-Reaktionen, zumeist irreversibel.

Literatur: Bard, A.J.; Parsons, R.; Jordan, J.(1985): Standard Potentials in Aqueous Solution. New York, Basel: Marcel Dekker. Weast, R. (ed.) (1979): CRC Handbook of Chemistry and Physics. 59th edition, D–196. Boca Raton, FL: CRC Press.

8.20 Nulladungspotentiale in V (gegen die Standard-Wasserstoffelektrode) – Potentials of zero charge in V (vs. the standard hydrogen electrode) (B. Kastening)

Ag	0,01 M Na ₂ SO ₄	-0,7
Al Constal	0,01 M KCl	-0,52
Au	0,01 M Na ₂ SO ₄	+0,23
2 · 10 Balanaster 01 · 2	1 M NaClO ₄ + 0,005 M HClO ₄	+0,3
Bi 10-01 - 2.5	0,01 M KCl	-0,36
C (akt)	0,5 M Na ₂ SO ₄ + 0,005 M H ₂ SO ₄	+0,07
Cd	0,001 M KCl	-0,9
Co	0,01 M Na ₂ SO ₄	-0,32
Cu OL D.	0,01 M Na ₂ SO ₄	+0,03
Calegorial Man +-04-1	0,1 M NaOH	+0,05
Fe	0,005 M H ₂ SO ₄	-0,37
Ga	1 M NaClO ₄ + 0,1 M HClO ₄	-0,61
Hg	0,01 M NaF	-0,19
In ¹)	0,5 M Na ₂ SO ₄ + 0,005 M H ₂ SO ₄	-0,65
Na ¹) on q	0,05 M N(CH ₃) ₄ I + 0,1 M NaOH	-1,85
AND Pb Pb	0,0005 M K ₂ SO ₄	-0,64
PbO ₂	0,005 M H ₂ SO ₄	+1,8
Pt	0,025 M H ₂ SO ₄	+0,12
1. T.	0,003 M HClO4	+0,41
Sb	0,1 M HCl	-0,19
Sn	0,001 M KClO4	-0,46
Tl	0,001 M KCl	-0,82
110 A Tl ¹)	0,5 M Na ₂ SO ₄	-0,65

¹) als Amalgam (41,5% Tl bzw. 0,3% Na)

Literatur: Koryta, J.; Dvořák, J; Boháčková, V. (1975): Lehrbuch der Elektrochemie. Wien, New York: Springer-Verlag. Bockris, J.O'M.; Reddy, A.K.N. (1974): Modern Electrochemistry. Vol.2. New York: Plenum Press.

8.21 Kinetische Daten ausgewählter Redox-Reaktionen an verschiedenen Metallen in wäßriger Lösung¹) – Kinetic data of selected redox reactions at various metals in aqueous solutions¹) (B. Kastening)

Redox-Reaktion	Temp. °C	Elektrode	Elektrolyt	J^0	α
Ag/Ag ⁺	20	Ag	1 M HClO ₄	$1,34 \cdot 10^{5}$	0,65
Cd/Cd ²⁺	20	Cd	0,4 M K ₂ SO ₄	$1,9 \cdot 10^{2}$	0,55
Ce^{3+}/Ce^{4+}	25	Pt	H ₂ SO ₄	$4,0 \cdot 10^{-1}$) Beispicte
Cr^{2+}/Cr^{3+}	25	Hg	KCl	$1,0 \cdot 10^{-2}$	furnet Deld
Cu/Cu ²⁺	20	Cu	1 M CuSO ₄	$2,0 \cdot 10^{-1}$	0,5
Fe/Fe ²⁺	20	Fe	1 M FeSO ₄	$1,0 \cdot 10^{-4}$	0,5
Fe^{2+}/Fe^{3+}	25	Pt	1 M HClO ₄	$4,0 \cdot 10^{3}$	0,58
$Fe(CN)_6^{4-}$	43-248. Bernin, G	Nongen, Neidelle	erge Springer		
$/{\rm Fe}({\rm CN})_{6}^{3-}$	25	Pt	0,5 M K ₂ SO ₄	5	0,49
$\frac{1}{2}H_{2}/H^{+}$	20	Ag	1 M HCl	2	0,45
$\frac{1}{2}H_2/H^+$	25	Al	1 M H ₂ SO ₄	$1 \cdot 10^{-6}$	0,59
1/2H2/H+	25	Au	H ₂ SO ₄	2,5	A.
$\frac{1}{2}H_{2}/H^{+}$	20	Cu	1 M HCl	$1,7 \cdot 10^{-3}$	0,5
$\frac{1}{2}H_{2}/H^{+}$	20	Fe	1 M HCl	$1 \cdot 10^{-2}$	0,4
¹ / ₂ H ₂ /H ⁺	20	Hg	1 M HCl	$2 \cdot 10^{-8}$	0,5
$\frac{1}{2}H_{2}+OH^{-}/H_{2}O$	20	Hg	0,1 M NaOH	$2,5 \cdot 10^{-11}$	0,59
1/2H2/H+	20	Ni	1 M HCl	$4 \cdot 10^{-2}$	0,5
1/2H2/H+	20	Pd	1 M HCl	2	$(2,0^2)$
$\frac{1}{2}H_2/H^+$	25	Pt	1 M H ₂ SO ₄	$1,0 \cdot 10^{1}$	0,5
¹ / ₂ H ₂ +OH ⁻ /H ₂ O	25	Pt	1 M KOH	$1,0 \cdot 10^{1}$	0,5
$\frac{1}{2}H_2/H^+$	20	Sn	1 M HCl	$1 \cdot 10^{-4}$	0,4
1/2 H2/H+	20	W	1 M HCl	$1 \cdot 10^{-2}$	$1,5^2$)
Ni/Ni ²⁺	20	Ni	1 M NiSO4	$2 \cdot 10^{-5}$	0,5
2H2O/O2+4H+	25	Pt	1 M H ₂ SO ₄	$1 \cdot 10^{-2}$	0,25
40H ⁻ /O ₂	25	Pt	1 M KOH	$1 \cdot 10^{-2}$	0,3
Ti ³⁺ /Ti ⁴⁺	25	Pt	1 M Weinsäure	$9 \cdot 10^{3}$	0,55
Zn/Zn ²⁺	20	Zn	1 M ZnSO ₄	$2 \cdot 10^{-1}$	0,5

 J^0 : Austauschstromdichte in A/m². α : Durchtrittsfaktor.

¹) Die kinetischen Parameter hängen stark von der Oberflächenbeschaffenheit des Metalls ab.

²) Werte $\alpha > 1$ weisen auf ein dem geschwindigkeitsbestimmenden Schritt vorgelagertes, potentialabhängiges Gleichgewicht hin.

Literatur: Parsons, R. (1959): Handbook of Electrochemical Constants. London: Butterworths. Bockris, J.O'M.; Reddy, A.K.N. (1974): Modern Electrochemistry. Vol. 2. New York: Plenum Press. Hamann, C.H.; Vielstich, W. (1981): Elektrochemie II. Weinheim: Verlag Chemie. Rieger, P.H. (1987): Electrochemistry. Englewood Cliffs, NJ: Prentice-Hall.

T 8.21, 8.22

8.22 Permittivitätszahlen und Verlustfaktoren wichtiger Isolierstoffe bei Raumtemperatur, falls nicht anders angegeben – Permittivities and loss factors of important insulating materials at room temperature (P. Thoma)

		•		
Material bzw. Handelsname	Permittivi- tätszahl	Verlustfaktoren tan δ	1200 bis 1968	(PMN) (223 K)
LITER'S GETS his 300	Er	50 Hz	1 MHz	10 GHz
a) Technische Isoliers	stoffe			
Bernstein	2,2 bis 2,9	0,05	he here the set	Augustus Chendinal (D. (DR.)
Quarzgut (aus Quarzsand erschmolzen)	3,5 bis 3,7	0,002 bis 0,0006	0,0015 bis 0,0005	0,0012 bis 0,0004
Quarzglas (aus ein kristallinem SiO ₂ erschmolzen)	3,70 bis 3,83	2,8E-4 bis 8,2E-5	1,4E-4 bis 8,8E-5	3,5E-4 bis E-4
(50 °C)	3,7 bis 5,75	1,2E-3 bis 3E-4	E-3 bis 4E-4	5E-4 bis E-4
Ultrasil (DR)	3,7 bis 3,8	1,2E-4 bis 9,8E-5	1,32E-4 bis 8,8E-5	2,4E-4 bis 6E-5
Acrylgläser (Plexi- glas, Plexidur)	2,54 bis 5,2	0,06	0,032 bis 0,012	8E-3 bis 3E-3
Glimmer (Mineral)	5 bis 9	5E-4 bis 2E-5	5E-4 bis 2E-5	जन्मत्र का संस
Hartgummi	3 bis 4	0,005 bis 0,003	0,009 bis 0,005	(Zr, Sh)()Oi
Hartporzellan	5 bis 6,5	0,003 bis 0,002	0,001 bis 0,0005	Libbo, Ginbris.
b) Glaskeramiken	11,4 bis. 16	.0.	0.005.580.9	tulischeibenkon, on o
Zerodur	7.6	0.013	0.015	
Mexim (Alsthom- Glaskeramik) (DR)	4,32 bis 5,72	4E-4 bis E-4	4E-4 bis E-4	4E-4 bis E-4
SrTiO ₃ (Glaskeramik)	61 bis 68	0,003	0,0154	0,015
Alkali- Calciumsilikat	5 bis 7	0,02 bis 0,015	0,015	< (Alcar ad LVS) D.((AlbErev)(CDD)
Aluminium- Calciumsilikat	6 bis 7	0,002 bis 0,0016	0,003 bis 0,002	(%, Ba)NbyOg (273 6h 393 K)
Blei-Alkalisilikat	6 bis 8,5	0,003 bis 0,002	0,012 bis 0,008	(Pb, Mg) Mbg(br
Borsilikat	5 2010 84 80	0,02 bis 0,015	0,01 bis 0,005	.O.V.is
c) Isolierkeramiken	10.0 bes 12	20-20-3 be dt -4	0.02 vie 0.008	0.0001 768.003
BeO	3,3 bis 6,4	0,017 bis 3E-4	0.0038 bis 4E-4	1.5E-3 bis 5E-4
AIN	9,8 bis 10,7	0,054 bis 5E-4	0,002 bis 2E-4	0,0039
Al ₂ O ₃	8,4 bis 9,7	2E-3 bis 4E-4	3E-4 bis E-4	6E-4 bis 3E-4
d) Ferroelektrische K	eramiken und Eink	ristalle für Speicherzellen	und Kondensatoren	(4,2 bis 2914(.)
BaTiO ₃ (220 bis 373 K)	1150 bis 8100	0,008 bis 0,02	0,002 bis 0,01	0,4 bis 0,5
Ba(Pb, Bi)O ₃ (Mischeinkristall) (4,2 bis 700 K)	120 bis 2,2E+5	0,008 bis 0,12	0,007 bis 0,09	Perrit NoSec (00 bis 110 K (E & 00 With)
TiO ₂ Rutil (Einkristall)	25 bis 87	0,01 bis 0,007	0,0004 bis 0,0001	Rt 3160 - 2.8
TiO ₂ (Keramik Dupont R200) (DR) (273 bis 351 K)	103 bis 97	0,0023 bis 0,013	3E-4 bis 4,5E-4	2E-4 bis 2E-3

Die Zahl hinter dem Buchstaben E ist der Exponent zur Basis 10.

Material bzw.	Permittivi-	Verlustfaktoren tan d		enging and a second and a
Handershame	Er Er	50 Hz	1 MHz	10 GHz
Pb(Mg, Nb)O ₃	Toma IC	NEW COLORADO	antos un a astasar.	and man remaining and
(PMN) (222 K)	2200 bis 1800	0.06 bis 0.05	0.1 bic 0.08	Material Szw.
(300 K)	1,4E+4 bis 1.8E+4	0,07 bis 0,06	0,12 bis 0,11	10 ¹ 0,05
(335 K)	9000	0,11 bis 0,04	0,2 bis 0,15	and the house of the
Mg ₂ SiO ₄ (Steatit 410) (DR) (273 bis 345 K) andere Typen	5,77 bis 5,70 5,1 bis 7,0	0,0055 bis 0,0050 0,01 bis 0,005	0,0006 0,0012 bis 0,0006	0,0022 bis 0,00089 0,0031 bis 0,00089
(Pb, Zr)TiO ₄ (PZT)	130 bis 3400	0,02 bis 0,004	0,03 bis 0,02	10→ (medogeleris Operatied (not ein.)
(0 bis 20 kV/cm) MgTiO ₃ (DR) (15 bis 25 °C)	13,7 bis 13,9	4E-4	4E-4	2,8E-4
CaTiO ₃ (82 °C)	167 157	0,0021 bis 0,0013 0,04	0,0002 0,0006	0,0085 bis 0,0028
(Mg, Ca)TiO ₃ (233 bis 373 K)	22 bis 25	0,005 bis 0,0016	0,005 bis 0,0016	0,0007 bis 0,0003
(Zr, Sn)TiO ₄ (233 bis 373 K)	39,000 and 900.0	3E-4 bis 9E-5	5E-5	3E-5 bis 4E-5
LiNbO ₃ (Einkris-	27,9 bis 85,2	0,001 bis 0,003	0,006 bis 0,23	0,07 bis 0,09
(600 K)	5,2E+3 bis 5,4E+3	Rg IM	BCL 2-	b) Biblemahali (d. 202.0.
LiTaO ₃ (Einkristall- scheiben)	38 bis 54	0,001	0,004	0,001 bis 0,008
(630 bis 930 °C) K SbSiQ4	E+4 bis 2E+7	0,5 bis 0,1	0,5 bis 0,1	SETIO:
(273 bis 565 K) (632 bis 730 K)	15 260 bis 130	0,32 0,08 bis 0,018	0,02 0,01 bis 0,0046	10 ⁺ 0L64LA
(Sr, Ba)Nb ₂ O ₆ (273 bis 393 K)	500 bis 7,8E+4	0,02 bis 0,8	0,03 bis 0,8	0,01 bis 0,7
(Pb, Mg) ₂ Nb ₂ O ₇ (0 bis 3 kV/cm)	21000 bis 80	0,06 bis 0,1	0,06 bis 0,1	Blet Alkalizitian 0
Bi ₄ V ₂ O ₁₁ (300 bis 900 K)	33 bis 79	0,04 bis 0,1	0,04 bis 0,175	0,05 bis 0,01
BaFe ₁₂ O ₁₉ Ferrit	320 bis E+5	0,1	0,1	0.663.0
(4,2 bis 293 K) BaTiFe4Ou	50 bis 900	0.08	0.08	0-1 0,\$nA
Ferrit (4,2 bis 293 K)		Fridk ad L-d der Oberffichenbesch	n an the state of the second sec	ALO,
Bi ₂ WO ₆ (4,2 bis 350 K)	64 bis 140	0,3 bis 0,4	0,3 bis 0,5	BaTriO.
(Ni, Zn)Fe ₂ O ₅ Ferrit	450 bis 200	0,5 bis 0,3	0,4 bis 0,3	nint. Freiteslahlei) ⁶
NbSe ₃ (60 bis 110 K) ($E > 0,1 V/cm$)	2E+8	nenie, Kerger, R.H. (NALL DEPENDENT	(4,2 bia 700 K)
K _{0.3} MoO ₃ (60 bis 110 K)	3,46E+7 bis 3,89E+6	500,0 aid 10,	25 bis 87	TiO ₂ Ruiil (Einicristali)
$Sn_2P_2S_6$	4-32, 4 bis 4, 58-4	0023 his 0,013	0 103 bis 97 Fin 1	-TiO ₁ (Keramile Dus-
(60 K) (340 bis 400 K)	2,4E+4 bis 500	0,065 0,17 bis 0,08	0,065 0,17 bis 0,08	0,18 bis 0,08

Material bzw.	Permittivi-	Verlustfaktoren tan δ		
Handelsname	ε_r	50 Hz	1 MHz	10 GHz
a) Farmalaktrische Gläser	2.1 bis 2.2	0,0005	0.0005	JAE as bit de at.
c) remotiekinische Gluser			1303 III IQUA III III I III III	LOOM #1 PRIMATES (1
V ₂ O ₅ -TeO ₂ (Mischglas)	80 bis 180	0,1 bis 0,08	0,008	Y2rOs (Centina).0
LiTaO3 (273 bis 300 K)	41 bis 49	0,001	0,001	allacheiben)
(600 K)	32000	0,6	0,6	(300 K)
$(K, Li)TaO_3$ (0.1 bis 1 kV/mm)	1,5E+4 bis 2E+3	0,16	0,15	- (73)9
O Duna dahainaha Cläsan	2.8 5 3.5	4.02	0,015	ZrOs (Einkris-
1) Pyroelektrische Glaser	721-100	0.001 1:000	0.0000 L:- 0.000	laffschriben)2000.0
BaAl ₂ O ₄ (123 bis 593 K)	7,2 bis 16,9	0,001 bis 0,02	0,0008 bis 0,008	(390 K) (77 K)
LiNbO ₃	1-3		S	(4,230)
(273 bis 300 K) (600 K)	32 bis 65 51000	0,001 bis 0,006	0,004 bis 0,008	0,08 bis 0,1
		00052468068002000	1 13.2 1.0 43 40.00	(273 his 300 K)
g) Substrate und Wafer für	die Halbleitertech	nik		
Al ₂ O ₃ Sinterpresslinge	8,4 bis 9,5	5E-3 bis 4E-4	E-3 bis 4E-4	3,5E-4 bis 6E-5
Al ₂ O ₃ Einkris-	8,8 bis 9,4	1,8E-3 bis E-4	8E-5 bis 3E-4	6E-5 bis 8E-6
(4.2 bis 300 K)	8.0 bis 11.58	2E-6 bis 1.6E-3	2E-6 bis 1.8E-4	2E-6 bis 6E-5
GeO2	39.8	0.53	0.66	
Ge	11.4 bis 16.0	uterialien bei 7 g 30	0.005 bis 0.9	0.0018 bis 0.76
(100 bis 473 K)	metrickingen vegi	ElektroCentratorial, Sil	substan nicht reit lader	enne percenten Mechen
NdPO ₄ (Keramik)	7	4E-3 bis 6E-4	4E-3 bis 6E-4	Cufton Streifenlei-
MgO, Einkris-				Tefford
tallscheiben	0 0 kia 10 0	0.016 his 0.0002	0.000 1:- 0.0005	0.0025 1:0.0000
(300 K) (77 K)	9.6	2.5E-4 bis 6E-5	2.5E-4 bis 4E-5	9E-5 bis 4E-5
(4,2 K)	9,6	< 2E-5	< 2E-5	< 2E-5
Si (DR)	11,8 bis 13		5E-4 bis 0,02	0,0016 bis 0,039
(100 bis 473 K)	E-4 bis 4E-4	一正直と		Duroid Structon-
SiC	6,53 bis 6,7	0,032	0,036	taxing the second
MgAl ₂ O ₄ (Isometri-	8,17 bis 8,57	0,0009 bis 0,0006	0,0011 bis 0,0008	(mit Korundaniver)
scher Spinelkris- tall) (DR)	1 4 4 L 40 /			
GaAs	11.2 bis 13.5	2E-3 bis 8E-4	0.02 bis 0.008	0.007 bis 0.0006
(100 bis 473 K)	10,6 bis 13,5	7E-5 bis 2E-3	2E-4 bis 0,07	0,0001 bis 0,03
h) Stark wärmeleitende, di	inne Isolierfilme ur	nd Scheiben für die Hal	bleitertechnik	6 06 June 2 Million
Diamant polykrist	7.5 bis 9.5	< 0.0001	< 0.00001	< 0.0001
(Ouasidiamant)	1,0 010 9,0	- 0,0001	< 0,00001	C 0,0001
Diamant (Einkris-	5,5 bis 5,7	< 0,0001	< 0,00001	< 0,0001
tallscheiben,	09 1.iC)	11105 27		
isometrisch)				60 2 60
B_4C (4.8 bis 46 K)	12 bis 3200	0,004 bis 0,15	0,002 bis 0,08	ini Phytometry Iskille
BN	3.5	5E-4 bis 0.002	6E-5 bis 3E-4	Cellulosescettu
Al-O- polykrist	93 bis 117	0.005 bis 0.0004	5E-4 bis $3E-4$	F-4 bis $3F-4$
SiO ₂ polykrist	3.75 bis 6.0	0.02 bis 0.0006	0.02 bis 0.0002	8.5E-3 bis E-4
SiOo as Nu s	2.18 bis 2.5	0.032	0.036	0.02
GaN polykrist	12.4 bis 18	0,0097	0,0066	0.005
AIN polykrist.	6,2 bis 9,6	0,0003 bis 0,002	0,0005 bis 0.003	3.2E-4
Si ₃ N ₄ polykrist.	5,5 bis 8,9	0,29 bis 0,08	0,085 bis 0,007	0,015

Material bzw.	Permittivi-	Verlustfaktoren tan δ	Permutaivi n	Material baye.
inandersharite diQ 01	$\varepsilon_{\rm r}$	50 Hz	1 MHz	10 GHz
i) Substrate für Hocht	emperatursuprale	iter	Test.	c) Ferroelektrische G
YZrO ₃ (Ceraflex) SrTiO ₃ (Einkris-	30 bis 23	0,0037	0,0037	V ₁ O ₆ -TeO ₂ (Minchglas)
tallscheiben) (300 K) (77 K) (4,2 K)	140 bis 310 1900 2E+4	0,12 bis 0,02 0,02 bis 0,004 0,006 bis 0,0003	0,008 bis 0,0003 0,02 bis 0,003 0,0008 bis 8E-5	0,03 bis 0,0003 0,002 bis 6E-5
ZrO ₂ (Einkris- tallscheiben) (300 K) (77 K) (4,2 K) LaAlO ₂ (Einkris	38 bis 40 28 25	0,03 0,016 2E-4	0,016 0,002 2E-4	0,004 8E-4 4E-4
tallscheiben) (273 bis 300 K) (4,2 bis 90 K)	15,2 26,3 bis 22	0,00052 bis 0,0007 8E-6 bis 2E-5	0,00056 bis 0,00065 8E-6 bis 2E-5	0,00058 bis 0,0007 2,5E-6 bis 4E-5
NdGaO ₃ (Einkris- tallscheiben)	20 bis 25	a		o.ogganian ASA
LaGaO ₃ (Einkris- tallscheiben) (4,2 bis 300 K)	25	8E-5 bis 2E-3	E-5 bis 1,8E-3	3E-6 bis 8E-4
k) Platinenmaterial	005 bit 0,9	.0	11,4 164 16,0	Ge
Cuflon Streifenlei- tersubstrat (DR) (Teflon)	2,1	1E-4	1E-4	6,6E-4 bis 4,5E-4
Diaclad Glasfaser- teflon	2,3 bis 2,6	0,001	0,001	0,0008 bis 0,0025
Diaclad Teflonke- ramik	10,2 bis 10,5	0,0025	0,0025	0,0025 bis 0,001
Duroid Streifen- leitersubstrate (mit Teflon) (mit Korundpulver)	2,2 2,5 2,94 10,2	8E-4 bis 5E-4 8E-4 bis 5E-4 8E-4 bis 5E-4 7E-4 bis 5E-4	8E-4 bis 4E-4 8E-4 bis 4E-4 8E-4 bis 4E-4 7E-4 bis 5E-4	9E-4 2,2E-3 2,3E-3 1,2E-3
1) Dielektrika für Hoc	h-C Kondensatore	n bzw. Ladungssammler	0.04 bis 0.175	4,05 Bis ((80) (100
Ta ₂ O ₅ (-55 bis 100 °C)	5 bis 25	0,15 bis 0,02	0,08 bis 0,006	(100.618 473.30)
SrTiO ₃ polykrist. (20 bis 1000 °C)	140 bis 210	0,08 bis 0,001	0,01 bis 0,006	0,008 bis 0,004
Cd ₂ Nb ₂ O ₇ (pyroel. Keramik) (290 bis 470 K)	800 bis 360	0,0022 bis 0,004	0,008 bis 0,017	(Quesidiament) Diament (Einkrise tattscheiter,
m) Plastomere Isolier	stoffe	0 0.5 Bly 0 and 100.0	12 89 33080	B,C
Celluloseacetat Polyäthylen Polyäthylen- terentthalat	3,4 bis 5,5 2,15 bis 2,32 4	0,01 bis 0,005 0,0002 0,02	0,021 bis 0,064 2E-5	6E-6 bis 4E-5
Polymethylpenten Polypropylen Polystyrol	2,1 2,2 2,5 bis 3,1	0,0004 0,0004 4E-4 bis E-4	0,0005 0,0005 4E-4 bis 5E-5	SRAESPES GaN polykrist. AN polykrist. 70.0 StyRe jihtykrist. 7

Fortsetzung T 8.22

Material bzw.	Permittivi-	Verlustfaktoren tan δ					
Handelshame	ε_r	50 Hz	1 MHz	10 GHz			
Polytetrafluor- äthylen (Teflon)	2,1 bis 2,2	0,0005	0,0005	7,1E-5 bis 4E-4			
Teflon AF (DR)	1,89 bis 1,93	7,3E-5	8,4E-5	0,00035			
n) Duromere Isoliers	stoffe	a	a hard a shake	n indesirendi			
Epoxidharze	4 bis 4,5	0,01	0,01 bis 0,04				
Polyesterharze	4 bis 4,5	0,02	0,01 bis 0,03				
Silikonharze	2,8 bis 3,5	0,02	0,015	diciciansgre			
Polystone	2,2 bis 2,3	0,0002	0,0004	0,0005			
o) Elastomere Isolie	rstoffe	1-17 12-12	interest behavior				
Äthylen-Propylen Misch-polymerisat	2,3 bis 3,3	0,005	mit fi joletini cive	elistische (
Polymethan- elastomere	6,3 bis 8,5	0,01 bis 0,36	0,05 bis 0,1	PCS >			
Silikonkautschuk	2,8 bis 3,6	0,01 bis 0,03	0,004 bis 0,005	(offer projection)			

Bemerkung: Bei den Werten handelt es sich um Richtwerte, die besonders vom Elektrodenmaterial, von Verunreinigungen und Zusätzen im Isolator, aber auch von Fremdstoffeinschlüssen im Übergangsbereich Elektrode-Isolator abhängen. Bei Keramiken ist die Abhängigkeit von d. Zusammensetzung besonders stark. Die mit DR bezeichneten Materialien können als dielektrische Referenzmaterialien bei $T \leq 300$ K dienen. Ihre Struktureigenschaften verkleinern die Abhängigkeit der Verlustfaktoren vom Elektrodenmaterial. Sie dürfen nicht mit ladungsinjizierenden Medien bei T > 300 K in Berührung kommen.

8.23	Permittivitätszahlen der wichtigsten Ionenkristalle – Permittivities of the m	nost
	important ionic crystals (P. Thoma)	

Kristall	E _r	$\varepsilon_{r,\infty}=n^2$	Kristall	E _r	$\varepsilon_{r,\infty} = n^2$	Kristall	E _r	$\varepsilon_{r,\infty} = n^2$
AgBr	13,1	4,62	KC1	4,68	2,13	NaI	6,60	2,91
AgCl	12,3	4,01	KF	6,05	1,85	NH ₄ Cl	6,96	2,62
BaF ₂	7,33	2,09	KI	4,94	2,69	RbBr	5,0	2,33
BeO	7,35	2,95	LiBr	12,1	3,16	RbC1	5,0	2,19
CaF ₂	8,43	1,99	LiCl	11,05	2,75	RbF	5,91	1,93
CaO	11,8	3,28	LiF	9,27	1,92	RbI	5,0	2,63
CaBr	6,51	2,78	LiI	11,03	3,80	SrF ₂	7,69	2,08
CsC1	7,20	2,60	MgF ₂	5,1	2,4	SrO	13,3	3,31
CsI	5,65	3,03	MgO	9,8	2,95	TlBr	29,8	5,41
CuBr	8,0	4,08	NaBr	5,99	2,62	TICI	31,9	5,10
CuCl	10,0	3,57	NaCl	5,62	2,25	ZnS	8,3	5,07
KBr	4,78	2,33	NaF	6,0	1,74	a derection	Dame No CO	CLAIT SAME

8.24 Die thermoelastodielektrischen Materialkonstanten zweiter Ordnung mit Darstellung ihres Zusammenhangs durch das Heckmann-Diagramm – The thermoelastodielectric material constants of second order with a representation of their interrelation by means of the Heckmann diagram (P. Thoma)¹)

Material- eigenschaften	Materialkonstante	Symbol und Definition	SI-Einheit
thermische	spezifische Wärmekapazität	$c = \frac{\Theta \delta \sigma}{\varrho \delta \Theta}$	Jkg ⁻¹ K ⁻¹
dielektrische	Permittivität	$\varepsilon_{ik} = \frac{\delta D_i}{\delta E_k}$	Fm ⁻¹
	Inverse Permittivität	$\beta_{ik} = \frac{\delta E_i}{\delta D_k}$	F ⁻¹ m
elastische	Elastizitätskoeffizient	$s_{\lambda\mu} = \frac{\delta S_{\lambda}}{\delta T_{\mu}}$	$N^{-1} m^2$
	Elastizitätsmodul	$c_{\lambda\mu} = \frac{\delta T_{\lambda}}{\delta S_{\mu}}$	Nm ⁻²
pyroelektrische	pyroelektrischer Koeffizient	$p_i = \frac{\delta D_i}{\delta \Theta} = \frac{\delta \sigma}{\delta E_i}$	Cm ⁻² K ⁻¹
	pyroelektrischer Koeffizient	$\pi_i = -\frac{\delta E_i}{\delta \Theta} = \frac{\delta \sigma}{\delta D_i} = \pi_k$	Vm ⁻¹ K ⁻¹
	pyroelektrischer Modul	$q_i = -\frac{\delta E_i}{\Theta \delta \sigma} = -\frac{\delta \Theta}{\Theta \delta D_i}$	$C^{-1} m^2$
	pyroelektrischer Modul	$\varrho_i = \frac{\delta D_i}{\Theta \delta \sigma} = -\frac{\delta \Theta}{\Theta \delta E_i}$	V^{-1} m
piezoelektrische	piezoelektrischer Koeffizient	$d_{i\mu} = \frac{\delta D_i}{\delta T} = \frac{\delta S_{\mu}}{\delta E_i} = d_{k\lambda}$	CN ⁻¹
	piezoelektrischer Koeffizient	$g_{i\mu} = \frac{\delta E_i}{\delta T_{\mu}} = \frac{\delta S_{\mu}}{\delta D_i} = g_{k\mu}$	$C^{-1} m^2$
	piezoelektrischer Modul	$h_{ik} = -\frac{\delta E_i}{\delta S_{\mu}} = -\frac{\delta T_{\mu}}{\delta D_i} = h_{k\lambda}$	C ⁻¹ N
	piezoelektrischer Modul	$e_{i\mu} = \frac{\delta D_i}{\delta S_{\mu}} = -\frac{\delta T_{\mu}}{\delta E_i} = e_{ik} = e_{k\mu}$	Cm ⁻²
thermoelastische	Ausdehnungskoeffizient	$\alpha_i = \frac{\delta S_\lambda}{\delta \Theta} = \frac{\delta \sigma}{\delta T_\lambda} = \alpha_\mu$	K ⁻¹
	Spannungskoeffizient	$\tau_{\lambda} = -\frac{\delta T_{\lambda}}{\delta \Theta} = \frac{\delta \sigma}{\delta S_{\lambda}} = \tau_{\mu}$	$Nm^{-2}K^{-1}$
	Spannungsmodul	$\gamma_{\lambda} = -\frac{\delta T_{\lambda}}{\Theta \delta \sigma} = -\frac{\delta \Theta}{\Theta \delta S_{\lambda}}$	CaO 1
	Ausdehnungsmodul	$\sigma_{\lambda} = \frac{\delta S_{\lambda}}{\Theta \delta \sigma} = -\frac{\delta \Theta}{\Theta \delta T_{\lambda}}$	$N^{-1} m^2$

Die durch partielle Ableitungen erklärten Konstanten sind zweiter Ordnung, weil sie Größen enthalten, die ihrerseits durch partielle Ableitungen erklärt sind.

¹⁾Nach Tichy, J.; Gautschi, G. (1980): Piezoelektrische Meßtechnik. Berlin: Springer

T 8.24, 8.25, 8.26

Fortsetzung T 8.24

Das Heckmann-Diagramm vermittelt einen anschaulichen Zusammenhang zwischen den Materialkonstanten. An den Ecken des äußeren Dreiecks stehen die intensiven Zustandsgrößen, an den Ecken des inneren Dreiecks die extensiven Zustandsgrößen. Die Pfeile geben die Richtung von der unabhängigen Zustandsgröße zu der abhängigen Zustandsgröße an. Die kurzen Verbindungslinien der gleichgelegenen Ecken des inneren und äußeren Dreiecks stellen die Haupteffekte dar, die Linien zwischen den nicht gleichgelegenen Ekken repräsentieren die Kopplungseffekte. Nach Heckmann, G. (1925): Ergebnisse der exakt. Naturwiss. 4, 100.

8.25	Fermi-Energie E _F einiger M	letalle – I	Fermi energy .	$E_{\rm F}$ of	some metals	(E.Braun)
------	--	-------------	----------------	----------------	-------------	-----------

Metall	Li	Na	K	Rb	Cs	Mg	Ca	Al	Ag	Au	Cu
$E_{\rm F}$ in eV	4,7	3,1	2,1	1,8	1,5	7,0	4,7	11,6	5,5	5,5	7,0

Literatur: Hellwege, K.H. (1976): Einführung in die Festkörperphysik. Berlin, Heidelberg, New York: Springer.

8.26 Spezifischer elektrischer Widerstand ρ_0^{-1}) bei 0 °C, Temperaturkoeffizient des elektrischen Widerstandes α^{-2}) und Debye-Temperatur Θ_D von reinen Metallen – Electrical resistivity ρ_0 at 0°C, temperature coefficient of the resistivity α and Debye temperature Θ_D of pure metals (E.Braun)

Metall	$ \frac{\rho_0}{\text{in } 10^{-8} \Omega\text{m}} $	$\alpha \ in \ 10^{-3} \mathrm{K}^{-1}$	$\Theta_{\rm D}$ in K	Metall	$\frac{arrho_0}{\ln 10^{-8} \Omega m}$	α in 10 ⁻³ K ⁻¹	Θ _D in K
Ag	1,50	4,10	210	Ca	3,6	~4	230
Al	2,50	4,67	419	Cd	6,73	4,26	300
As	26,0	1 22 0	291	Co	5,2	6,58	445
Au	2,04	3,98	165	Cr	15,0	3,85 - 93 -	403
Ba	36	6,1	133	Cs	19,0	5,0	219
Be	2,78	7,5	1160	Cu	1,55	4,33	335
Bi	107	4,45	120	Feα	8,71	6,57	462

¹) Die Werte für nicht kubische Metalle sind aus Einkristalldaten gemittelt oder an polykristallinen Materialien gemessen.

²) α ist ein mittlerer relativer Temperaturkoeffizient, in der Regel für den Bereich zwischen 0 und 100 °C.

Metall	$\frac{\varrho_0}{\text{in } 10^{-8} \Omega\text{m}}$	α in 10 ⁻³ K ⁻¹	Θ _D in K	Metall	$\frac{Q_0}{\text{in } 10^{-8} \ \Omega \text{m}}$	α in 10 ⁻³ K ⁻¹	Θ _D in K
Ga	13,7	4,1	125	Pr	69	1,65	b aA a
Hf	26,5	4,4	254	Pt	9,81	3,92	233
Hg ³)	94,1	0,99	69	Pu	160	-2,97	e.hepflo
In	8,2	5,1	109	Rb	11,6	5,3	68
Ir	4,74	4,33	316	Re	18,9	3,1	310
K	6,3	5,4	100	Rh	4,33	4,57	370
La	65	1 march	132	Ru	6,67	4,5	426
Li	8,5	4,37	363	Sb	32,1	5,1	201
Mg	3,94	4,2	330	Sn	10,1	4,63	160
Mno	710	0,17	11.	Sra	20	~5	148
Mnß	91	1,4	410	Ta	12,4	3,6	247
Mn	23	6.3	- 90	Th	19,1	3,3	a repart
Mo	5.03	4.7	425	Ti	42	5,5	278
Na	4.27	5.5	160	T1	15	5,2	89
Nb	23.3	2.28	250	U	~25	Nint	
Ni	6.58	6.75	413	V	18,2	Contrade 1999	300
Os	95	4.2	256	W	4,89	4,83	380
Pb	19.3	4.22	90	Zn	5,45	4,2	100
Pd	9.77	3.8	275	Zr	40,5	4,0	270
Po	~45	~4,6	170-CON	AL =	17 = 15 = N	- Vm	N.

Fortsetzung T 8.26

³) flüssig.

Literatur: Gerritsen, A.N. (1956): In: Handbuch der Physik XIX, Hrsg. Flügge. Berlin, Göttingen, Heidelberg: Springer; Meissner (1935): Handbuch d.Exp.-Physik 11/2. Leipzig; Grüneisen (1945): Erg.d. exakten Naturw. **21**, Berlin.

8.27 Atomare Widerstandserhöhung $\Delta \rho_{At}$ und $\Delta \rho'_{At}$ für verschiedene in Kupfer gelöste Metalle – Atomic resistivity increase $\Delta \rho_{At}$ und $\Delta \rho'_{At}$ of different metals dissolved in copper (E. Braun)

Die Widerstandserhöhung $\Delta \rho$, die durch gelöste Fremdatome verursacht wird, deren Konzentration c in Atomprozent gemessen wird, ergibt sich zu: $\Delta \rho = \Delta \rho_{A1}c + \Delta \rho'_{A1}c^2$.

theray and X ai	$\begin{array}{c} \Delta \varrho_{\rm At} \\ {\rm in} \\ 10^{-8} \ \Omega {\rm m} / \\ {\rm at} \ \% \end{array}$	$\begin{array}{c} \Delta \varrho'_{\rm At} \\ {\rm in} \\ 10^{-8} \Omega {\rm m} / \\ ({\rm at} \%)^2 \end{array}$	oor orde (num toerning og ki_di	$\begin{array}{c} \Delta \varrho_{\rm At} \\ {\rm in} \\ 10^{-8} \Omega {\rm m} / \\ {\rm at} \ \% \end{array}$	$\begin{array}{c} \Delta \varrho_{\rm At}' \\ {\rm in} \\ 10^{-8} \Omega {\rm m} / \\ ({\rm at} \ \%)^2 \end{array}$		$\begin{array}{c} \Delta \varrho_{\rm At} \\ {\rm in} \\ 10^{-8} \Omega {\rm m} / \\ {\rm at} \ \% \end{array}$	$\begin{array}{c} \Delta \varrho_{\rm At}' \\ {\rm in} \\ 10^{-8} \Omega {\rm m} / \\ ({\rm at} \ \%)^2 \end{array}$
Be	0,62		Ni	1,25	15 38	In	1,06	0,026
Mg	0,65		Zn	0,32	14 BT2	Sn	2,88	0,094
Al	1,25	0,055	Ga	1,42	0,066	Sb	5,4	0,076
Si	3,95		Ge	3,79	0,096	Ir	5,7	- August
Р	6,7	Ausdehnungs	As	6,8		Pt	2,1	Ro In
Cr	3,6		Rh	4,40	1000	Au	0,55	
Mn	2,90	ungen erklärig	Pd	0,89	Conditioning, we	Hg	1,0	die meening v
Fe	9,3	en efclint sind.	Ag	0,14	The state of the		1	
Co	6,35	1,3	Cd	0,30	ini3 wie brie s	Metal	r nicht kubisch) Die Werte B

Literatur: Gerritsen, A. N. (1956): Hdb. d. Physik, Bd. XIX. Berlin, Göttingen, Heidelberg: Springer.

8.28 Grüneisen-Funktion $G(\vartheta)$ – Grüneisen function $G(\vartheta)$ (E. Braun)

 $\vartheta = \Theta_{\rm D}/T$, $\Theta_{\rm D}$ Debye-Temperatur

ϑ	$G(\vartheta)$	θ	$\dot{G}(\vartheta)$	θ	G (ϑ)	θ	G (ϑ)
0	1.0000	4,5	0,3867	9,0	0,06740	14,0	0,01289
0.1	0,9994	4,6	0,3729	9,1	0,06490	14,2	0,012185
0.2	0.9978	4.7	0,3595	9,2	0,06250	14,4	0,011528
0.3	0,9950	4.8	0,3466	9,3	0,06021	14,6	0,010915
0.4	0.9912	4.9	0,3340	9,4	0,05800	14,8	0,010344
0.5	0,9862	5,0	0,3217	9,5	0,05589	15,0	0,029805
0.6	0.9803	5.1	0,3098	9,6	0,05386	15,2	0,029302
0.7	0.9733	5.2	0,2983	9,7	0,05192	15,4	0,028831
0.8	0,9653	5,3	0,2871	9,8	0,05005	15,6	0,028389
0.9	0,9563	5,4	0,2763	9,9	0,04826	15,8	0,027974
1.0	0,9465	5,5	0,2658	10,0	0,04655	16,0	0,027584
1.1	0,9357	5,6	0,2557	10,1	0,04490	16,2	0,027218
1.2	0,9241	5,7	0,2460	10,2	0,04332	16,4	0,026873
1.3	0,9118	5,8	0,2366	10,3	0,04181	16,6	0,026549
1.4	0,8986	5,9	0,2275	10,4	0,04035	16,8	0,026243
1.5	0,8848	6,0	0,2187	10,5	0,03896	17,0	0,025955
1.6	0,8704	6,1	0,2103	10,6	0,03762	17,2	0,025683
1.7	0,8554	6,2	0,2021	10,7	0,03633	17,4	0,025427
1.8	0,8398	6,3	0,19425	10,8	0,03509	17,6	0,025185
1.9	0,8238	6,4	0,1867	10,9	0,03390	17,8	0,024956
2,0	0,8073	6,5	0,1795	11,0	0,03276	18,0	0,024740
2,1	0,7905	6,6	0,1725	11,1	0,03167	19,0	0,023819
2,2	0,7733	6,7	0,1658	11,2	0,03061	20,0	0,023111
2,3	0,7559	6,8	0,1593	11,3	0,02960	22	0,022125
2,4	0,7383	6,9	0,1531	11,4	0,02863	24	0,021500
2,5	0,7205	7,0	0,14715	11,5	0,02769	26	0,021089
2,6	0,7026	7,1	0,1414	11,6	0,02680	28	0,038097
2,7	0,6846	7,2	0,1359	11,7	0,02593	30	0,036145
2,8	0,6666	7,3	0,1306	11,8	0,02510	32	0,034747
2,9	0,6486	7,4	0,12555	11,9	0,02430	34	0,033724
3,0	0,6307	7,5	0,12067	12,0	0,02353	36	0,032963
3,1	0,6128	7,6	0,11599	12,1	0,02279	38	0,032387
3,2	0,5950	7,7	0,11150	12,2	0,02208	40	0,031944
3,3	0,5775	7,8	0,10719	12,3	0,02139	44	0,031328
3,4	0,5600	7,9	0,10306	12,4	0,02073	48	0,049375
3,5	0,5428	8,0	0,09909	12,5	0,02009	50	0,047964
3,6	0,5259	8,1	0,09529	12,6	0,01948	52	0,046806
3,7	0,5091	8,2	0,09165	12,7	0,01889	56	0,045061
3,8	0,4927	8,3	0,08816	12,8	0,01832	60	0,043841
3,9	0,4766	8,4	0,08480	12,9	0,01777	64	0,042967
4,0	0,4608	8,5	0,08159	13,0	0,01725	68	0,042328
4,1	0,4453	8,6	0,07851	13,2	0,01624	70	0,042073
4,2	0,4301	8,7	0,07555	13,4	0,01531	72	0,041852
4,3	0,4153	8,8	0,07272	13,6	0,01445	76	0,041492
4,4	0,4008	8,9	0,07000	13,8	0,01364	80	0,041215

8.29 Mittlere Druckkoeffizienten des elektrischen Widerstandes γ_p in 10^{-11} m²/N für Drücke bis zu 7 · 10⁸ N/m² bei 0 °C – Mean pressure coefficients of the electrical resistivity γ_p in 10^{-11} m²/N for pressures up to 7 · 10⁸ N/m² at 0 °C (E.Braun)

Metall	Mg	Al	Fe	Ni	Nb	Mo	Rh	Pd	Ta	W	Pt	Cu	Ag	Au	Pb
γ_p	4,48	4,36	2,39	1,89	1,20	1,33	1,67	2,17	1,48	1,37	1,97	1,92	3,52	3,00	13,24

Literatur: Gerritsen, A.N. (1956): Hdb. d. Physik. Bd. XIX, Berlin, Göttingen, Heidelberg: Springer.

8.30a Die thermoelektrische Spannungsreihe – Thermoelectric series (E. Braun)

Die Zahlen unter dem Metall X bedeuten die Thermospannung in mV, wenn das Bezugsmetall eine Temperatur von 0 °C, das Metall X eine solche von 100 °C hat. Bezugsmetall ist in Zeile 1 Platin, in Zeile 2 Kupfer, in Zeile 3 Wismut, in Zeile 4 stehen die "absoluten" Werte der Thermospannung.

Bi	Konst	Со	Ni	K	Pd	Na	Pt	Hg	С	Al	Mg	Pb	Sn	Cs
-7	-3,4	-1,6	-1,5	-0,9	-0,3	-0,2	0,0	0,0	+0,2	+0,4	+0,4	+0,4	+0,45	+0,5
-8	-4,1	-2,3	-2,2	-1,6	-1,0	-0,9	$-0,7_{5}$	$-0,7_{5}$	$-0,5_{5}$	$-0,3_{5}$	$-0,3_{5}$	-0,35	-0,3	$-0,2_{5}$
0	+3,6	+5,4	+5,5	+6,1	+6,7	+6,8	+7,0	+7,0	+7,2	+7,4	+7,4	+7,45	+7,45	+7,5
-8	-3,9	-2,1	-2,0	-1,4	-0,8	-0,7	$-0,5_{5}$	$-0,5_{5}$	-0,35	$-0,1_{5}$	$-0,1_{5}$	-0,1	-0,1	$-0,0_{5}$
Man- ganin	lr	Rh	Zn	Norm Ag Leg	Ag	Au	Cu	W	Cd	Mo	Fe	Sb	Si*	Te*
+0,6	+0,65	+0,65	+0,7	+0,7	+0,7	+0,7	$+0,7_{5}$	+0,8	+0,9	+1,2	+1,8	+4,7	+45	+ 50
$-0,1_{5}$	-0,1	-0,1	$-0,0_{5}$	$-0,0_{5}$	$-0,0_{5}$	$-0,0_{5}$	0,0	+0,05	+0,15	+0,45	+1,05	+4,0	+44	+49
+7,6	+7,65	+7,65	+7,7	+7,7	+7,7	+7,7	+7,75	+7,8	+7,9	+8,2	+ 8,8	+12	+ 52	+57
+0,05	+0,1	+0,1	+0,15	+0,14	+0,15	+0,15	+0,2	+0,25	+0,35	+0,65	+1,25	+4,2	+44	+49

* Diese Werte hängen von der Dotierung des Halbleiters ab.

8.30b Thermospannungen in mV nach DIN 43710 für einige gebräuchliche Thermoelemente – Thermoelectric voltages in mV according to DIN 43710 for some common thermocouples (E.Braun)

Bezugstemperatur 0°C.

Cu-Konst.

°C	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	mV/ K ¹)
$-100 \\ 0$	-3,40 0	$ \begin{array}{r} -3,68 \\ -0,39 \end{array} $	$-3,95 \\ -0,77$	-4,21 -1,14	-4,46 -1,50	-4,69 -1,85	-4,91 -2,18	$ \begin{array}{r} -5,12 \\ -2,50 \end{array} $	$-5,32 \\ -2,81$	$-5,51 \\ -3,11$	-5,70 -3,40	0,023 0,034
°C	0	10	20	30	40	50	60	70	80	90	100	mV/ K ¹)
0	0	0,40	0,80	1,21	1,63	2,05	2,48	2,91	3,35	3,80	4,25	0,043
100	4,25	4,71	5,18	5,65	6,13	6,62	7,12	7,63	8,15	8,67	9,20	0,050
200	9,20	9,74	10,29	10,85	11,41	11,98	12,55	13,13	13,71	14,30	14,90	0,057
300	14,90	15,50	16,10	16,70	17,31	17,92	18,53	19,14	19,76	20,38	21,00	0,061
400	21,00	21,62	22,25	22,88	23,51	24,15	24,79	25,44	26,09	26,75	27,41	0,064
500	27,41	28,08	28,75	29,43	30,11	30,80	31,49	32,19	32,89	33,60	34,31	0,069

¹) Mittelwerte der 100°-Bereiche. Dies trifft auch für die weiteren Teile von Tab. T 8.30b zu.

Fortsetzung T 8.30b

Fe-Konst.

°C	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	m V/K
$-100 \\ 0$	-4,75 0	$-5,15 \\ -0,51$	$-5,53 \\ -1,02$	$-5,90 \\ -1,53$	$-6,26 \\ -2,03$	$-6,60 \\ -2,51$	$-6,93 \\ -2,98$	-7,25 -3,44	-7,56 -3,89	-7,86 -4,33	$-8,15 \\ -4,75$	0,034 0,048
°C	0	10	20	30	40	50	60	70	80	90	100	m V/K
0 100 200 300 400	0 5,37 10,95 16,56 22,16	0,52 5,92 11,51 17,12 22,72	1,05 6,47 12,07 17,68 23,29	1,58 7,03 12,63 18,24 23,86	2,11 7,59 13,19 18,80 24 43	2,65 8,15 13,75 19,36 25.00	3,19 8,71 14,31 19,92 25,57	3,73 9,27 14,88 20,48 26,14	4,27 9,83 15,44 21,04 26,71	4,82 10,39 16,00 21,60 27,28	5,37 10,95 16,56 22,16 27,85	0,054 0,056 0,056 0,056 0,057
500 600 700 800	27,85 33,67 39,72 46,22	28,43 34,26 40,35 46,89	29,01 34,85 40,98 47,57	29,59 35,44 41,62 48,25	30,17 36,04 42,27 48,94	30,75 36,64 42,92 49,63	31,33 37,25 43,57 50,32	31,91 37,85 44,23 51,02	32,49 38,47 44,89 51,72	33,08 39,09 45,55 52,43	33,67 39,72 46,22 53,14	0,059 0,058 0,061 0,065 0,069

NiCr-Ni

	27											
°C	0	10	20	30	40	50	60	70	80	90	100	m V/K
0	0	0,40	0,80	1,20	1,61	2,02	2,43	2,85	3,26	3,68	4,10	0,041
100	4.10	4.51	4,92	5,33	5,73	6,13	6,53	6,93	7,33	7,73	8,13	0,040
200	8.13	8,54	8,94	9,34	9,75	10,16	10,57	10,98	11,39	11,80	12,21	0,041
300	12,21	12,63	13,04	13,46	13,88	14,29	14,71	15,13	15,55	15,98	16,40	0,042
400	16,40	16,82	17,24	17,67	18,09	18,51	18,94	19,36	19,79	20,22	20,65	0,042
500	20,65	21,07	21,50	21,92	22,35	22,78	23,20	23,63	24,06	24,49	24,91	0,043
600	24,91	25,34	25,76	26,19	26,61	27,03	27,45	27,87	28,29	28,72	29,14	0,042
700	29,14	29,56	29,97	30,39	30,81	31,23	31,65	32,06	32,48	32,89	33,30	0,042
800	33,30	33,71	34,12	34,53	34,93	35,34	35,75	36,15	36,55	36,96	37,36	0,041
900	37.36	37,76	38,16	38,56	38,95	39,35	39,75	40,14	40,53	40,92	41,31	0,040
1000	41,31	41,70	42,09	42,48	42,87	43,25	43,63	44,02	44,40	44,78	45,16	0,039
1100	45,16	45,54	45,92	46,29	46,67	47,04	47,41	47,78	48,15	48,52	48,89	0,037
1200	48,89	49,25	49,62	49,98	50,34	50,69	51,05	51,41	51,76	52,11	52,46	0,036
								and the second sec				

PtRh-Pt

°C	0	10	20	30	40	50	60	70	80	90	100	m V/K
0	0	0,056	0,113	0,173	0,235	0,299	0,364	0,431	0,500	0,571	0,643	0,006
100	0,643	0,717	0,792	0,869	0,946	1,025	1,106	1,187	1,269	1,352	1,436	0,008
200	1,436	1,521	1,607	1,693	1,780	1,868	1,956	2,045	2,135	2,225	2,316	0,009
300	2,316	2,408	2,499	2,592	2,685	2,778	2,872	2,966	3,061	3,156	3,251	0,009
400	3,251	3,347	3,442	3,539	3,635	3,732	3,829	3,926	4,024	4,122	4,221	0,010
500	4,221	4,319	4,419	4,518	4,618	4,718	4,818	4,919	5,020	5,122	5,224	0,010
600	5,224	5,326	5,429	5,532	5,635	5,738	5,842	5,946	6,050	6,155	6,260	0,010
700	6,260	6,365	6,471	6,577	6,683	6,790	6,897	7,005	7,112	7,220	7,329	0,011
800	7,329	7,438	7,547	7,656	7,766	7,876	7,987	8,098	8,209	8,320	8,432	0,011
900	8,432	8,545	8,657	8,770	8,883	8,997	9,111	9,225	9,340	9,455	9,570	0,011
1000	9,570	9,686	9,802	9,918	10,035	10,152	10,269	10,387	10,505	10,623	10,741	0,012
1100	10,741	10,860	10,979	11,098	11,217	11,336	11,456	11,575	11,695	11,815	11,935	0,012
1200	11,935	12,055	12,175	12,296	12,416	12,536	12,657	12,777	12,897	13,018	13,138	0,012
1300	13,138	13,258	13,378	13,498	13,618	13,738	13,858	13,978	14,098	14,217	14,337	0,012
1400	14,337	14,457	14,576	14,696	14,815	14,935	15,054	15,173	15,292	15,411	15,530	0,012
1500	15,530	15,649	15,768	15,887	16,006	16,124	16,243	16,361	16,479	16,597	16,716	0,012

8.31 Kenndaten von Supraleitern – Properties of superconductors (E. Braun)

8.31a Supraleitende Elemente – Superconducting elements

 T_c Übergangstemperatur, B_c kritische Flußdichte bei 0 K, 2 Δ Energielücke bei 0 K, k Boltzmann-Konstante, ξ_0 Kohärenzlänge, λ_0 Eindringtiefe.

NVR	T _c in K	<i>B</i> _c in mT	$2\Delta/kT_{\rm c}$	ξ _o in nm	λ ₀ in nm	50	T _c in K	$B_{\rm c}$ in mT	$2\Delta/kT_{\rm c}$	ξ _o in nm	λ_0 in nm
Al	1,19	9,9	2,9 bis 3,5	1600	50	Pb	7,19	80,3	4,1 bis 4,3	30 bis 112	32
Be	0,026	1664	haddigra	Sest	historie E	Re	1,7	19,8	ASS AN	36 154	-1986s
Cd	0,52	3,0	Lange Ci	18.41	12 19 19	Ru	0,49	6,6	12.07	S.U. 158.0	2004
Gaα	1,09	5,9	4,5	Section Content	13.32.00	SnB	3,75	30,6	3,3 bis 3,7	230 bis 296	25 bis 36
β	6,5	1.800	Lines cell	LOLIST	65.36.1.20	Ta	4,48	83,0	3,0 bis 3,7	92,5	35
Y	7,5	e	1-38,47 - 3	37.85	84 137.25	Tc	8,2	141	-34,85-	3.67 34.20	
Hfα	0,165	51559-	0. 68641	44922	929 43,57	Tha	1,37	16,2	88,98	9/72 40:34	766
Hgα	4,15	41,2	4,6	1 8 60	38 bis 45	Tiα	0,39	5,6	1492472	6.22 1.45.8	E. 0984
β	3,9	33,9	22 -18	1.0	0.9 0	ß	4,0	150 -	2. 0.2	01.0	a Lan.
v	3,74		and and an	164 4		Tlα	2,39	17,1	3,2 bis 3,6		
In	3,4	29,3	3,5 bis 4,1	440	64	ß	1,75		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1. 1845 - 19	NICI-NE
Ir	0,14	1,9	01 021	70	ind 199	Ua	0,68?	12210	1 act	811-9	VE VSV
Laa	4,8	100	2,9	-0 -		V	5,3	102	3,4 bis 3,6		
β	5,9	160	2,40	605	12 A 1 A 1	W	0,012	107	100.1	13 5 1 74 3	Long
Mo	0,92	9,8	1 25 71	10.98	See 13	Zn	0,85	5,2	2,5	22 812	She
Nb	9,3	195	2,8	44	32	Zrα	0,55	4,7	13.04	2.21 12.63	3001
Os	0,65	6,5	19,791.2	19,36	10.81 1	ß	0,5	7,67	1.12,24	6,40 16,80	
Pa	1,4	Sol effe	0.1 30,657	133068	18+23,20	ω	0,65	19.41	108,128	0,457 26,07	0.000.

66 11 501	$T_{\rm c}$ in K	B_{c2} in T	9-612 10:035 10	T _c in K	B_{c2} in T
NbTi	10,6	11,8	Nb ₃ (Al ₈ Ge ₄)	20,7	40,5
V ₃ Ga	14,5	21	SiV ₃	16,9	21,0
Nb ₃ Sn	18,05	20		ALL	

 T_c Übergangstemperatur, B_{c2} obere kritische Flußdichte.

Literatur: Buckel W.(1977): Supraleitung. Weinheim: Physik-Verlag.

8.31c	Hochtemperatur-Supraleiter – High temperature superconductors (Hott (19	992),
	Fink (1992))	

Material	$T_{\rm c}$ in K	Material	$T_{\rm c}$ in K
YBa ₂ Cu ₃ O ₇	6 (1) 2 0 P 4	$Tl_2Sr_2Ca_{n-1}Cu_nO_{2n+3}$	00 his 122
EuBa ₂ Cu ₃ O ₇	92	$Tl_2Ba_2Ca_{n-1}Cu_nO_{2n+3}$	90 DIS 122
GdBa ₂ Cu ₃ O ₇		K ₃ C ₆₀	19,3
$Bi_2Sr_2Ca_{n-1}Cu_nO_{2n+4}$	90 bis 122	Rb ₃ C ₆₀	28
(+Pb)	18,000	RbCs ₂ C ₆₀	33
$Tl_2Ba_2Ca_{n-1}Cu_nO_{2n+4}$	110 bis 127	Rb _{2,7} Tl _{2,2} C ₆₀	48

 E_{g} Breite der verbotenen Zone, dE_{g}/dT Temperaturabhängigkeit von E_{g} , dE_{g}/dp Druckabhängigkeit von E_{g} , m_{n}^{*} und m_{p}^{*} effektive Elektronen bzw. Löchermasse, m_{0} Elektronenmasse, m_{ds}^{*} Zustandsdichtemasse, μ_{n} und μ_{p} Beweglichkeit der Elektronen bzw. Löcher, ε_{r} stat. Dielektrizitätszahl, n Brechzahl bei 546,1 nm, Θ_{D} Debye-Temperatur, ϱ Dichte, t_{s} Schmelzpunkt, a Gitterstonstante, G Gitterstruktur: Diamant (Diam.), hexagonal (hex.), Zinkblende (Zb), Wurtzit (Wurtz.), trigonal (trig.), kubisch (kub.) u.a. (alle Angaben in der Regel für 300 K, alle Werte gerundet).

Literatur: Madelung, O. (1982): In: Landolt-Börnstein, Neue Serie, Bde. 17a, 17b, 17c. Berlin, Heidelberg, New York: Springer; Pamplin, B.R. (1981/82): Handbook of Physics and Chemistry, 62nd ed. Cleveland, Ohio: CRC Press; Hahn, D. (1967): In: Hütte, Taschenbuch der Werkstoffkunde (Stoffhütte), 4. Aufl. Berlin, München: Wilhelm Ernst u. Sohn; Aspnes, D.E.; Studna, A.A. (1983): Dielectric functions and optical parameters of Si, Ge, GaAs, GaSb, InP, InAs and InSb from 1.5 eV to 6.0 eV. Phys. Rev. **B27**, 985–1009; Burkhard, H.; Dinges, H.W.; Kuphal, E. (1982): Optical properties on $In_{1-x}Ga_xP_{1-y}As_y$, InP, GaAs, and GaP determined by ellipsometry. J. Appl. Phys. **53**, 655–662; W ettling, W.; W indscheif, J. (1984): Elastic Constants and Refractive Index of Boron Phosphide. Sol. State Comm. **50**, 33–34.

0.32a	Element	are Halble	iter – Eleme	ntary semi	conducto	SIC								
Angl. Part	E _g in eV	dEg/dT in 10 ⁻⁴ eV/K	dEg/dp in 10 ⁻⁶ eV/bar	m*/m0	m*/m0	$\mu_{\rm n}$ in m ² /Vs	μ_p in m ² /Vs	εr	E	⊕ K ii	e in g/cm ³	ts in ∘C	a in mm	U Hokke
C ¹)	5,48	-0,5	(E. F	∥ 1,4 ⊥ 0,36	0,8 ⁴)	0,18	0,16	5,7	2,42	1860	3,52	3827	0,35668	Diam.
Si	1,11	-2,8 ²)	-1,41	1,18 ⁴)	0,59 ⁴)	0,15	0,05	11,9	4,07	636 bis 674	2,33	1412	0,5431	Diam.
Ge α-Sn ³)	0,666 (0,095)	-3,7 -0,5	+7,3	0,55 ⁴) 0,02	0,3 ⁴) 0,3	0,38 0,29	0,18 0,30	16,2 24	5,13	374 238	5,32 7,29	937,3	0,5658 0,6489	Diam.
Se	1,76 bis 2,2	6-	mico	1,4 ⁴)			10 ⁻⁴	8,5	4,1		10 200	220	0,43662 0,49536	hex.
Te	0,34	-0,4	-20	⊥ 0,06 ⁵) ∥ 0,05	0,114 ⁵) 0,109	0,17	0,11	30 43	3,07		6,24	450	0,44570 0,59290	hex.
1) Diaman	it ²) bei 200	K ³) nur unte	erhalb 13,2 °C sta	abil ⁴) m [*] _{ds}	⁵) bei He	-Temperat	n I			5 a 45	я я	R R	Mel 0	fr ten

III-V-Verbindungen – III-V compounds 8.32b

	G			Zb	hex.		Zb	Zb	Wurtz.		Zb	Zb		Zb
	a	in	um	0,3616	0,6661	0,25040	0,4538	0,4777	0,311	0,498	0,547	0,5660	N' Y	0,6136
	ts	in	°C	>2973		6			3000	0.0	2550	1740	La Da	1065
	Ø	.Е	g/cm ³	3,49	2,18	14	2,9	5,22	3,26		2,40	3,7	-) II	4,3
	ΘD	.u	K	1700	598		985	800			588	417		292
	п		17	2,12	1.1.1.1	L Is	3,2					3,7		ca.3,4
	Er		100	7,1	1 5,06	6,85	П		6		9,8	10,06		12
	μp	ш.	m ² /Vs	1			0,0025					0,042		0,04
	$\mu_{\rm n}$	ii.	m ² /Vs				0,004				0,001 bis 0,008	0,12		0,02
	m_p^*/m_0											0,5/	$0,26^{2})$	0,4
	m_n^*/m_0											0,5 ²)	bis 0,8	60'0
D	dEg/dp	in	10 ⁻⁶ eV/bar	aE This		in voi	- 12	110	bi	in	Ke		12	-1,6
の時間の	dE_g/dT	E	10 ⁻⁴ eV/K		山田町	の理想にい	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	山田時に、	年はの時に	山北をいり	ve Elei Identi Identi Ingona Ingona	4-	市村市の	-3,5
Cash Bl	$E_{\rm g}$	Li	eV	9	9	の時代で	2,0	ca.1	6,2		2,45	2,15		1,63
			んけ	BN ¹)	BN	ac bir	BP	BAs	AIN	11	AIP	AIAs	1 0 19	AISb

586

T 8.32a, 8.32b, 8.32c

Fortset	zung 1	8.320												
00 10	$E_{\rm g}$ in eV	dE _g /dT in 10 ⁻⁴ eV/K	dE_g/dp in $10^{-6} eV/bar$	m_n^*/m_0	m _p /m ₀	μ_n in m ² /Vs	$\mu_{\rm p}$ in m ² /Vs	εr	и	G _D K	e in g/cm ³	ts in °C	a in mm	Ð
GaN	3,44	-5	lipolar b Aerent posteore	0,27	0,6 bis 1,0	<0,044	Lind Ch	1 9,5 1 10,4 bis 12,2		600	6,1	1700	0,32 0,52	Wurtz.
GaP	2,27	-5,2	-1,7	0,35	0,5	0,018	0,012 bis 0,015	1,11	3,44	445 bis 468	4,13	1467	0,5451	Zb
GaAs GaSb	1,43 0,70	-3,9 -3,7	+9,4 +12	0,068 0,04 ³)	0,5 0,3/	0,9 0,26	0,04 0,07	12,91 15,69	4,05 4,16	344 266	5,316 5,614	1240 712	0,56533	Zb Zb
Inni	00	white then	intrato- the	0.11	0,05 ³)	bis 0,77	bis 0,085	0.3	1 2 60	niss V	681	1100	0 35446	Wintra
NIII	7 ,0	on	lor npu	1110	don bais	bis 0,025	100	с, ^с	1,0.07	ien	bis 6,89	0011	0,57034	
InP	1,34	-2,9	+4,6	0,073	0,45/ 0,12 ³)	0,42 bis 0,54	0,015	12,61	3,66	321	4,81	1062	0,5869	Zb
InAs	0,356	-3,5	+8	0,027	0,33 0,4/ 0,024	2 bis 3,3	0,01 bis 0,045	15,15	4,27	247 bis 262	5,7	942	0,60583	Zb
InSb	0,18	-2,75	+15	0,013	0,4/ 0,016 ³)	7	0,085	16,8 bis 18,0	4,12	203 bis 208	5,775	527	0,64794	Zb
¹) metas 8.32c	tabil unt	er Normal-Beu VI-Verbine	dingungen ²) <i>i</i> dungen – II	m [*] ³) be -VI <i>com</i>	i He-Temperat pounds	12		····Digita Diract 社会委員会	i A Bouble Suncti 2 z Bogref	Carrier Carrier	Elected Elected Applet	Chenil Byclin		Materially B Bamp
88	E _g in eV	dE _g /dT in 10 ⁻⁴ eV/K	dE_g/dp in $10^{-6} eV/bar$	m [*] /m	0 m [*] _p /m ₀	$ \frac{\mu_n}{\text{in}} $	$\begin{bmatrix} \mu_p \\ in \\ m^2/Vs \end{bmatrix}$	ę	и	⊕ _D K	e in g/cm ³	ts in ∘C	a in nm	IJ
ZnO	3,2	-9,5	0,6	0,3	0,6 ²)	0,018		8,15	2,025	370 his 416	5,675	2000	0,3252	Wurtz.
ZnS ZnS	3,56 3,58	5	5.7 6	0,34 0,28 ²)	0,49/0,5	8 ²) 0,02	0.003	8,9 9,6 7.1	2,375 2,4 7 7	350	4,09 4,09 5.26	1520	0,541	Zb Wurtz. Zh
CIIZ	1.7	7*/	0	0.17	15 0,1	cn'n	cunin	1,1 his 9.6	1.47	100+	07,0	0701	0000010	70

setz	ung T 8.	32c	0	11									1	
	Eg in eV	dE _g /dT in 10 ⁻⁴ eV/K	dE_g/dp in $10^{-6} eV/bar$	m_n^*/m_0	m*/m0	μ_n in m ² /Vs	$\mu_{\rm p}$ in m ² /Vs	£r	u	G _D K	e in g/cm ³	ts in ∘C	a in nm	IJ
	2,3	-4,5	9	0,12	0,6	0,033	0,0007	9,7 bis 10,1	3,56	223	5,64	1295	0,6101	Zb
	1,3 2,50	-4,2 -4,1	3,3	0,1-0,3 0,2	0,8	0,012 0,037	0,002	21,5	2,49	255 300	8,16 4,82	1497 1475	0,46957 0,4136 0.6716	NaCl Wurtz.
_	1,75	-3,6	4	0,13	0,6	0,05	0,001 his 0.005	bis 10	2,6	181	5,81	1241	0,4299	Wurtz.
	1,43 2,1	-3	80	0,11	0,35	0,07 0,001 bis 0.003	0,006	10,3 32,5	3,26	158	5,86	1092	0,6481 0,4149 0,4495	Zb trig.
	-0,2 bis 0.5		ato.				ted - Column	18,2		2005	7,73	1750	0,5851	Zb
	0,30 0,15	Ţ	10	0,03 0,017	0,78 0,5	1,9 3,5	0,01	25,6		147	8,25 8,1	799 670	0,6084 0,6461	Zb Zb
11	lb 344 °C si	tabil ²) bei F	He-Temperatur			23	CI0/II							2 8
	Sonsti	ge Halbleit	ter – Other s	emicondu	ictors									
	Eg in eV	dE _g /dT in 10 ⁻⁴ eV/K	dE _g /dp in 10 ⁻⁶ eV/bar	m_n^*/m_0	0 <i>m</i> / [*] _p / <i>m</i> 0	μ_n in m ² /Vs	μ_p in m ² /Vs	Er n	¥ :: •	0 L V	e in g/cm ³	ts in °C	a in mm	Ð
	0,37 0,26	44		0,15 0,3	0,1 0,34	0,06 0,1	0,06	17,6 4 21 4	,19 ,54	12.8	7,61 8,15	1077 1076	0,5936 0,6124	NaCl NaCl
	0,30 3,02	4 -2,5		0,21	0,14	0,16 6.10 ⁻⁵	0,075	30 5 89 2	,48 ,613	8	8,16	917	0,6454 0,4594 0,2050	NaCl Rutil
	2,0 2,0	-6,5	Math Mar	1200 and		0,0015	0,0010 0,01	9,5 7 2	,849	88	5,75 bis 6.14	2870 1235	1,095 0,4270	CaF ₂ kub.
- 1	1 1 1 1 1	No						_			1110 010			VUU.

588

Struktur und Eigenschaften der Materie

F 8.32a, 8.32b, 8.32c

8.33	Fachglossar "Technische Acronyi	me" der Ma	terialkunde – (P. Thoma)
AD	Auger Deexcitation	CMOS	Complementary Metal Oxide
AED	Auger Electron Diffraction	CPA	Coherent Potential Approximation
AES	Auger Electron Spectroscopy	CPD	Contact Potential Difference
AFM	Atomic Force Microscopy	CPE	Chemical Preferential Etching
ALE	Atomic Layer Epitaxy	CR	Cyclotron Resonance
ALMBE	Atomic Layer Molecular Beam Epitaxy	CTEM	Conventional Transmission
AP	Atom Probe (Electron Microscopy)	CS	Canacitance Spectroscopy
APD	Avalanche Photo Diode	CT	Charge Transfer
AP-FEES	Atom Probe Field Emission	CVD	Chemical Vapor Deposition
AP-FIM	Atom Probe Field Ion Misroscopy	DB	Dangling Bond
ARD	Angle Resolved Distribution	DBRTS	Double Barrier Resonant Tunnel Structure
ARSIMS	Angle Resolved Secondary Ion	DC	Deep Center
	Mass Spectrometry	DCD	Double Crystal Diffraction
ASAXS	Anomalous Small Angle X ray	DCP	Direct Current Plasma
	Scattering	(2)DEG	(2) Dimensional Electron Gas
ASIC	Application Specified Integrated	DEX	Diffraction of Evanescing X-rays
	Circuit	DFET	Depletion Field Effect Transistor
AIM	Absorption Tunnel Microscopy	DFT	Discrete Fourier Transform
BCM	Bond Charge Model	DH	Double Heterostructure
BEEN	(BEM) Ballistic Electron Emission Microscopy	DHBT	Double Heterojunction Bipolar Transistor
BG	Buried Gate; Band Gap	DHHEMT	Double Heteroiunction High
BH	Buried Heterostructure		Electron Mobility Transistor
BiCFET	(BICFET) Bipolar inversion Channel Field Effect Transistor	DLA	Diode Laser Absorption, Diffusion Limited Aggregation
BiCMOS	Bipolar Complementary Metal	DLOS	Deep Level Optical Spectroscopy
	Oxide Semiconductor	DLTS	Deep Level Transient Spectroscopy
BiMOS	Bipolar Metal Oxide	DOR	Dynamic Optical Reflectivity
	Semiconductor	DOS	Density Of States
BJT	Bipolar Junction Transistor	DOES	Doubleheterostructure Opto
CARS	Spectroscopy	DMOS	Diffused Metal Oxide
CBE	Chemical Beam Epitaxy		Semiconductor
CCD	Charge Coupled Device	DQW	Double Quantum Wall
CDF	Charge Density Fluctuation	DR	Deposition Rate
CEMS	Conversion Electron Mößbauer	DSC	Differential Scanning Calorimetry
	Spectroscopy	DX	Acro(nym) für Deep State
CHINT	CHarge INjection Transistor	DXD	Double X-ray Diffraction
CITS	Current Imaging Tunneling	EBIC	Electron Beam Induced Current
	Spectroscopy	ECR	Electron Cyclotron Resonance
CL	Cathodo Luminescence	ECL	Emitter Coupled Logic

18,322, 8,324, 8,33

ECP	Electron Channeling Pattern	FMR	FerroMagnetic Resonance
EDAX	Energy Dispersive Analysis of	FTIR	Fourier Transform InfraRed
	X-rays	FWHM	Full Width (at)Half Maximum
EELS	Electron Energy Loss Spectroscopy		(Valenzbandbreite)
EFET	Enhancement Field Effect	FZ	Float Zone
	Transistor	GSMBE	Gas Source Molecular Beam
EFSE	Electric Field Stimulated Emission		Epitaxy
EHP	Electron Hole Plasma	HBT	Horizontal Bridgman Technique
EID	Electron Impact Desorption	HEDINT	Hotoro Emitter Pipolar Transistor
ELDOR	ELectron DOuble Resonance	HEED	High Energy Electron Diffraction
EM	Electro Migration	HEED	High Electron Mobility Transistor
EMPA	Electron Microscopic Polarization	HEMI	High Electron Mobility Transistor
ENIDOD	Analysis	HFED	Detector
ENDOR	Resonance	HFFL	Heterostructure Field Effect Laser
FPD	Etch Pit Density	HFEM	Heteroiunction Field Effect
EPMA	Electron Probe Micro Analysis	_ nol vu	Modulator
EPR	Electron Paramagnetic Resonance	HFET	Heterostructure Field Effect
FR	Electro Reflectance		Transistor
ESCA	Electron Scattering (for) Chemical	HJBT	HeteroJunction Bipolar Transistor
LUCK	Analysis	HPT	Heterojunction Photo Transistor
ESD	Electron Stimulated Desorption,	HTSC,	HTC High Temperature Superconductor
EXAFS	Extended X-ray Absorption Fine	HVCMOS	High Voltage Complementary Metal Oxide Semiconductor
FF	Field Effect	IBD	Ion Beam Deposition
I L	Fracto-Emission (of particles or	IBE	Ion Beam Etching, Isoelectronic
	electrons under fracture)		Bound Exciton
FEES	Field Emission Electron	IBS	Ion Beam Sputtering, Ion Beam
	Spectroscopy		Synthesis
FEG	Field Emission Gun	ICTS	Isothermal capacitance Transient
FEL	Free Electron Laser, Field Effect		Spectroscopy
	Laser	IETS	Inelastic Electron Tunneling
FET	Field Effect Transistor	ICDT	Spectroscopy
FFT	Fast Fourier Transform	IGBT	Isolated Gate Bipolar Transistor
FIM	Field Ion Microscopy	INTP	Inclastic Mean Free Fath
FIR	Finite Impulse Response, Far	IPE	Inverse Photo Emission
FIDDC	Infraked	IPES	Spectroscopy
FIRPS	Spectroscopy	IRPME	InfraRed Phase Modulated
FISTM	Field Ion Scanning Transmission	not	Ellipsometry
1151111	Microscopy	IR-RA	InFrared-RamanAbsorption
FLCD	Ferroelectric Liquid Crystal	IRRAS	(IRAS) InfraRed Reflection
19.99	Display		Absorption Spectroscopy
FLS	Fractional Layer Superlattice	IRS	InfraRed Spectroscopy
FMDPS	Frequency MoDulation	ISS	Ion Scattering Spectroscopy,
	Photopyroelectric Spectr.		Impedance Standard Substrate

T 8.33

JFET	Junction FET		
LAD	Laser Activated Deposition		
LB	Langmuir-Blodgett (Technique; Molecular Films)		
LD	Lattice Distortion, Laser Diode		
LDA	Local Density Approximation		
LDOS	Local Density Of States		
LED	Light Emitting Diode		
LEC	Liquid Encapsulated Czochralski (Kristallz.)		
LEED	Low Energy Electron Diffraction		
LEELS	Low Energy Electron Loss Spectroscopy		
LEEM	Low Energy Electron Microscopy		
LIF	Laser induced Fluorescence		
LITD	Laser Induced Thermal Desorption		
LMIS	Liquid Metal Ion Source		
LPCVD	Low Pressure Chemical Vapor Deposition		
LPE	Liquid Phase Epitaxy		
LSD	Local Spin Density		
LTMBE	Low Temperature Molecular Beam Epitaxy		
LTPL	Low Temperature Photo Luminescence		
LTSEM	Low Temp. Scanning Electron Microscopy		
LVM	Local Vibration Mode		
MAD	Multiple (wavelength) Anomalous Dispersion		
MBE	Molecular Beam Epitaxy		
MCD	Magnetic Circular Dichroism		
MD	Molecular Dynamics, Modulation Doped		
ME	Mößbauer Effect		
MEE	Migration Enhanced Epitaxy		
MESFET	MEtal Semiconductor Field Effect Transistor		
MIC	Microwave Integrated Circuit		
MINPN	Metal-Insulator-N(conducting)- P(conducting)-N(conducting)		
MIS	Metal Insulator Semiconductor (Schichtfolge)		
MISFET	Metal-Insulator-Semiconductor Field Effect Transistor		
ML	Molecular Layer, MonoLayer		

MLC	Multi Layer Ceramic
MLD	Magnetic Linear Dichroism
MNOS	Metal-Nitride-Oxide-Semi-
MO	Molecular Orbital
MOCVD	Metal Organic Chemical Vapor
MOCTD	Deposition
MOKE	Magneto Optical Kerr Effect
MOMBE	Metal Organic MBE
MOS	Metal-Oxide-Semiconductor (Schichtfolge)
MOS-LSI	Metal-Oxide-Semiconductor Large Scale Integration
MOVPE	Metal Organic Vapor Phase Epitaxy
MPL	Magneto Photo Luminescence
MQW	Multiple Quantum Well
MS	Mass Spectroscopy, Mößbauer
NAA	Neutron Activation Analysis
NDC	Negative Differential Conductivity
NDR	Negative Differential Pasistance
NERFET	NEgative Resistance FET
NEXAFS	Near Edge X-ray Absorption Fine
C D Carrinaria	Structure
NMOS	N(-channel) Metal-Oxide- Semiconductor
NMR	Nuclear Magnetic Resonance
NPCVD	Normal Pressure Chemical Vapor Deposition
NQR	Nuclear Quadrupole Resonance
NRA	Nuclear Resonance Absorption
NSR	Nuclear Spin Relaxation
NTD	Neutron Transmutation Doping
ODMR	Optical Detection of Magnetic Resonance
ODENDOR	Optically Detected Electron Nucleus DOuble Resonance
OED	Oxidation Enhanced Diffusion
OES	Optical Emission Spectroscopy
OMBD	Organic Molecular Beam
OMCVD	Organo Metallic Chemical Vapor
OMMBE	Organo Metallic Molecular Beam
OMVPE	Organo Metallio Vasas Dhara
ONIVIL	Epitaxy

592

Struktur und Eigenschaften der Materie

ON	Oxide Nitride (Schichtfolge)	QE	Quantum Efficiency
ONO	Oxide Nitride Oxide (Schichtfolge)	QEXAFS	Quantum Extended X-ray
ORD	Oxidation Retarded Diffusion		Absorption Fine Structure
PAP	Planar Averaged Potential	QED	Quantum Electro Dynamics
PCS	Photo Conduction Spectrum	QMS	Quadruple Mass Spectrometer
	Photo Capacitance Spectroscopy	QSE	Quantum Size Effect
PCSC	Point Contact Solar Cell	QW	Quantum Well, Quantum Wire
PD	Photo Diode	QWB	Quantum Well Box
PDS	Photothermal Deflection Spectroscopy	QWIP	Quantum Well Infrared Photodetector(conductor)
PES	Photo Electron Spectroscopy, Photo	QWH	Quantum Well Heterostructure
	Emission Spectroscopy	QWR	Quantum WiRe
PESC	Passivated Emitter Solar Cell	QWW	Quantum Well Wire
PFES	Photo Field Emission Spectroscopy P(-conducting)-	RAIRS	Reflection Absorption Infra Red Spectroscopy
1 114	Insulator-N(conducting)	RBS	Rutherford BackScattering
	Schichtfolge	RDF	Radial Distribution Function
PITS	Photo(n) Induced Transient Spectroscopy	RED	Reflection Electron Diffraction, Radiation Enhanced Diffusion
PL	PhotoLuminescence	REM	Raster Elektronen Mikroskopie,
PLE	Photo Luminescence Excitation		Reflection Electron Microscopy
PLEE	Pulsed Laser Evaporation and Epitaxy	RIMS	Resonance Ionized Mass Spectrometry
PLES	Photo Luminescence Excitation	RIT	Resonant Interband Tunneling
	Spectrum	RN	Resonant Neutralization
PME	Phase Modulation Ellipsometry	RHET	Resonant Hot Electron Tunneling
PMOS	P(Channel)Metal Oxide Semiconductor	RHEED	Reflection High Energy Electron Diffraction
PMR	Polarization Modulation Reflectivity	RPA	Resonant Periodic Absorption, Random Phase Approximation
POMBE	Pulsed Organo Molecular Beam Epitaxy	RPIB	Reactive Partially Ionized Beam (method)
PPC	Persistent Photo Conduction	RRS	Resonant Raman Scattering
PR	Photo Reflectance	RS	Raman Spectroscopy
PSD	Photo Stimulated Desorption	RT	Room Temperature, Rapid
PT	Phase Transition; Photo Transistor		Thermal, Resonant Tunnelling
PTIS	Photo Thermal Ionization	RTA	Rapid Thermal Annealing
	Spectroscopy	RTN	Rapid Thermal Nitridation
PTSD	Photo Thermal Surface	RTS	Resonant Tunnel Structure
	Deformation	RXF	Refracted X-ray Fluorescence
PVD	Physical Vapor Deposition	SAES	Scanning Auger Electron
PVR	Peak (to) Valley (current) Ratio		Spectroscopy
PVS	Photo Voltage Spectroscopy	SAM	Scanning Auger Microprobe
PYS	Photoemission Yield Spectroscopy	SANS	Small Angle Neutron Scattering
QCSE	Quantum Confined Stark Effect	SAPD	Superlattice Avalanche Photo
OD	Quantum Dot		Diode

T 8.33

mktur und Eigenschaften der Mate

SAS	Scanning Auger Spectroscopy,	SLS	Strained Layer Superlattice
	Small Angle Scattering	SNMS	Secondary Neutral(Particle) Mass
SAXS	Small Angle X-ray Scattering		Spectroscopy
SBD	Schottky Barrier Diode	SNOS	Silicon Nitride Oxide on Silicon (Schichtfolge)
SBRET	Transistor	SOI	Silicon On Insulator (Schichtfolge)
SBZ	Surface Brillouin Zone	SOM	Scanning Optical Microscopy
SCLC	Space Charge Limited Current	SOS	Silicon On Sapphire
SCR	Space Charge Region	SPA	Surface Peak Area, Spot Profile
SCS	Surface Charge Spectroscopy		Analysis (bei LEED),
SdH	Shubnikov de Haas	ODE	Surface Photo Absorption
SDM	Scanning Damping Microscopy	SPE	Solid Phase Epitaxy
SDR	Surface Differential Reflectivity	SPR	Spreading Resistance Probe
SE	Spectrometric Ellipsometry	SPS	Surface Photovoltage Spectroscopy
SEAM	Scanning Electron Acoustic	SPSI	Short Period SuperLattice
	Microscopy	SPSTM	Spin Polarized Scanning Tunnel
SEDOR	Spin Echo DOuble Resonance	51 51 141	Microscopy
SEE	Secondary Electron Emission	SPV	Surface Photo Voltage
SEG	Selected Epitactical (Epitaxy)	SQW	Single Quantum Well
	Growth	SR	Synchrotron Radiation
SEM	Scanning Electron Microscopy	SRN	Surface Recombination Velocity
SER	Spin Echo Resonance	SRM	Standard Reference Material
SERS	Surface Enhanced Raman	SRPES	Synchrotron Radiation Photo
OFT	Spectroscopy		Emission Sprectroscopy
SEI	Stark Effect Transision	SRV	Surface Recombination Velocity
SEXAFS	Fine Structure	STEM	Scanning Transmission Electron Microscopy
SFM	Scanning Force Microscopy	STM	Scanning Tunnel Microscony
SHG	Second Harmonic Generator	STS	Scanning Tunnel Spectroscopy
SI	Semi Insulating	SUFET	Superconducting Field Effect
SID	Substitutional Interstitial Diffusion	our Dr	Transistor
SIMOX	Silicon-Interface-Metal-Oxide (Schichtfolge)	SXAP	Soft X-ray Appearance Potential
	Separation by IMplantation of OXygen	SXPS	Scanning X-ray Photoelectron
SIMS	Secondary Ion Mass Spectrometry		(Spectroscopy) Soft X-ray Photoelectron
SIN	Superconductor-Insulator-Nor- mal(-conductor)		Spectroscopy SurfaceX-ray Photoelectron
SIS	Superconductor-Insulator-		Spectroscopy
010	Superconductor (Schichtfolge)	TD	Theoretical Density, Thermal
SISFET	Semiconductor-Insulator-		Donor
	Semiconductor Field Effect Transistor	TDDB	Time Dependent Dielectric Breakdown
SIT	Static Induction Transistor	TDH	Temperature Dependent Hall
SKS	Stochastic Kinetic Simulation		(effect)
SL	Super Lattice	TDI	Total Dielectric Isolation

TDMS	Thermal Desorption Mass Spectrometry	TSL	Tilted Super Lattice, Thermally Stimulated Luminescence
TDS	Thermal Desorption Spectroscopy	TTL	Transistor-Transistor Logic
	Thermal Diffused Scattering	TTS	Transient Tunneling Spectroscopy
	(Rö-Technik-Laue)	TXRF	Total (reflection) X Ray
TE	Thermionic Emission		Fluorescence
TEAS	Thermal Energy Atom Scattering	ULSI	Ultra Large Scale Integration
TED	Transmission Electron Diffraction	UPS	Ultraviolet Photoelectron
TEF	Trap Enhanced Field		Spectroscopy
TEM	Transmission Electron Microscopy	VBM	Valence Band Maximum
TEOS	Thermally Enhanced Oxygen	VDWE	Van Der Waals Epitaxy
	Sputtering	VGF	Vertical Gradient Freeze
TFE	Thermionic Field Emission		(Kristallzuchtmethode)
TFET	(T-FET) T(shaped	VHSIC	Very High Speed Integrated Circuit
	gate-source-drain)FET	VPE	Vapor Phase Epitaxy
TFL	Trap Filled Limit	VUV	Vacuum UltraViolet
TFT	Thin Film Transistor	WF	Work Function
TMA	ThermoMagnetic Analysis	XAES	X ray Auger Electron Spectroscopy
TOF	Time Of Flight	XAFS	X ray Absorption Fine Structure
TOFMS	Time of Flight Mass Spectroscopy		(Spectroscopy)
TOPFET	Temperature(and)Overload Protected FET	XANES	X-ray Absorption Near Edge Structure
ТРА	Two Photon Absorption	XAS	X-ray Absorption Spectroscopy
TPR	Temperature Programmed Reaction	XPD	X-ray Photoelectron Diffraction
TPSIMS	Temperature Programmed	XPS	X-ray Photoelectron Spectroscopy
11 511415	Secondary Ion Mass Spectroscopy	XRD	X-Ray Diffraction
TOW	Triangular Ouantum Well	XRF	X-Ray Fluorescence
TRR	Time Resolved Reflectance	XS	Acro für Cross Section(al)
TS	Tunneling Spectroscopy	XSW	X-ray Standing Wave
TSC	Thermally Stimulated Conduction	XT	X-ray Topography
TSC	(TSCan) Thermally Stimulated	XUV	Extreme (-vacuum) UltraViolet
100	Capacitance	ZMR	Zone Melt Recrystallization